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Abstract

Let Qp ⊆ K ⊆ L be a tower of finite Galois extensions and V be a p-adic de
Rham representation of the absolute Galois group GK of K. In the first part
of my work I extend the conjecture of D. Benois and L. Berger in [BB] to the
case of a not necessary abelian extension L/K of p-adic fields, which relates the
equivariant local epsilon constant attached to V (and to the extension L/K)
to a natural algebraic invariant coming from the Galois cohomology groups of
V . I show the functorial properties of this conjecture and prove its validity
for unramified extensions L/K with G = Gal(L/K) of order prime to p and
V = Qp(1)(χur).

In the second part of the work we study Galois descent of K1-groups of group
algebras with coefficients in certain subrings of the ring of integers of Cp, the
completion of an algebraic closure of Qp. These results were important for the
above mentioned reformulation of the conjecture.

Zusammenfassung

Seien Qp ⊆ K ⊆ L endliche galoissche Körpererweiterungen und V eine p-
adische de Rham Darstellung der absoluten Galoisgruppe GK von K. Im ersten
Teil meiner Arbeit setze ich die Vermutung von D. Benois und L. Berger auf den
Fall einer nicht notwendigerweise abelschen Erweiterung L/K von p-adischen
Körpern fort. Diese Vermutung stellt einen Zusammenhang zwischen den equiv-
arianten lokalen ε-Faktoren assoziiert zu V (und zu der Körpererweiterung
L/K) und der natürlichen algebraischen Invariante kommend von den Galoisko-
homologiegruppen von V her. Ich zeige die funktoriellen Eigenschaften der
Vermutung und beweise ihre Gültigkeit im Falle einer unverzweigten Körper-
erweiterung L/K mit der Galoisgruppe G = Gal(L/K), deren Ordnung prim
zu p ist, und V = Qp(1)(χur).

In dem zweiten Teil dieser Arbeit gewinnen wir Galoisabstiegsresultate für
die K1-Gruppen von den Gruppenalgebren mit Koeffizienten in einem Unterring
des Ganzheitsrings von Cp, der Komplettierung des algebraischen Abschlusses
von Qp. Diese Resultate waren für die oben genannte Umformulierung der
Vermutung wichtig.
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1 Introduction

The central aim of Iwasawa theory consists of describing the relation between
special values of L-functions and Galois cohomology of objects M occurring in
arithmetic algebraic geometry, i.e. sets of solutions of Diophantine equations
or more generally motives. This is a very actual and active research area in
modern number theory. The most prominent example besides the analytic class
number formula is certainly the Birch-Swinnerton-Dyer conjecture, which we
would like to recall here briefly: Let E be an elliptic curve defined over Q;
then attached to E we have the complex Hasse-Weil L-function L(E, s) and the
Birch-Swinnerton-Dyer conjecture predicts, firstly, that the order of vanishing
at s = 1 of this complex analytic function (known to be holomorphic on the full
complex plane C by Taylor, Wiles et al.) equals the rank of the Mordell-Weil
group E(Q) of E. Secondly, the conjecture states that the leading term (of the
Taylor expansion of L(E, s) at s = 1) can be expressed in terms of the most
important arithmetic invariants of the curve E - up to the period and regulator
all these invariants can be rephrased using certain Galois cohomology groups.

To arbitrary motives this conjecture has been extended by Fontaine, Perrin-
Riou and Kato and is called the Tamagawa Number Conjecture (TNC). Again
we have the complex L-function L(M, s) attached to a motive M , which is
believed to satisfy the following functional equation relating L(M, s) to the L-
function L(M∗(1), s) of the (Kummer) dual motive M∗(1) of M :

L(M, s) = ε(M, s)
L∞(M∗(1),−s)
L∞(M, s)

L(M∗(1),−s).

Here L∞ are so called Euler-factors at infinity (attached to M and M∗(1),
respectively), which is built up by certain Γ-factors and certain powers of 2 and
π (depending on the Hodge structure of M and M∗(1), respectively), while the
so called ε-factor decomposes into local factors

ε(M, s) =
∏
ν∈S

εν(M, s),

where ε∞(M, s) is a constant equal to a power of i1.
In the following we assume the validity of the functional equation. Then,

taking leading coefficients L∗ of the Taylor expansion of L(M, s) at s = 0 induces

L∗(M) = (−1)ηε(M, 0)
L∗∞(M∗(1))

L∗∞(M)
L(M∗(1)),

where η denotes the order of vanishing at s = 0 of the completed L-function
L∞(M∗(1), s)L(M∗(1), s).

Example 1.1 For the motive M = h1(A)(1) of an abelian variety we have

L∞(M∗(1), s) = L∞(M, s) = 2(2π)−(s+1)Γ(s+ 1), η = 0,

L∗∞(M∗(1)) = L∗∞(M) = π−1, ε∞(M, 0) = −1.

1We fix once and for all the complex period 2πi, i.e. a square root of −1.
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It is by no means evident that the validity of the TNC for M is equivalent
to the validity of the TNC for M∗(1) under this functional equation on the
complex analytic side and under Artin/Verdier- or Poitou/Tate-duality on the
p-adic Galois cohomology side. To the contrary, they are only compatible if
and only if the (local) ε-factors are in a specific way related to certain (local)
cohomology groups, see the explanation in [V]. It is the content of the (absolute)
ε-conjecture that these required properties of the ε-factors (attached to p-adic
representations) hold; sometimes this conjecture is also called Local Tamagawa
Number Conjecture. It is known for certain semi-stable representations by the
work [Be1].

The key idea of Iwasawa theory is now to study the above conjectural prop-
erties of L-functions and p-adic Galois cohomology for whole (p-adicly vary-
ing) families of motives simultaneously. In this spirit Fukaya and Kato [FK]
formulated recently a vast generalization of the TNC, which they call the ζ-
isomorphism conjecture. Their sort of ‘meta’-conjecture builds now the frame-
work of actual research in this area. In particular, its validity would imply the
validity of the Equivariant Tamagawa Number Conjecture (ETNC) as formu-
lated by Burns and Flach [BF]. The compatibility with the functional equation
relies now on the behavior of the ε-constants in families. This is the content
of the (equivariant) ε-isomorphism conjecture again due to Fukaya and Kato,
which we would like to refer to simply as the equivariant ε-conjecture. Be-
sides the above stated compatibility property the significance of this conjecture
is the following: Coates, Fukaya, Kato, Sujatha and Venjakob [CFKSV] have
formulated and investigated a (non-commutative) Iwasawa main conjecture for
elliptic curves without complex multiplication with respect to the GL2-tower
of number fields, which arises by adjoining the p-power torsion points of E to
Q. This conjecture, in particular, claims the existence of (non-commutative)
p-adic L-functions satisfying natural interpolation properties. Fukaya and Kato
have proved that the validity of both their ζ-isomorphism conjecture and their
equivariant ε-conjecture implies the existence of this totally new type of p-adic
L-function for E. On the other hand, by a result of Burns and Venjakob [BuV]
the validity of the GL2-main conjecture for an elliptic curve E/Q implies under
certain conditions the validity of the ETNC for E with respect to any finite quo-
tient G of the GL2-tower, if the corresponding ε-isomorphism for subquotients
of TpE with respect to G exists.

But it is not only this rather philosophical relation between these conjec-
tures which draws the attention to the ε-conjecture: one hopes that a proof
of this conjecture also would give hints for a construction of these new p-adic
L-functions for GL2. Indeed, one of Iwasawa’s constructions of the p-adic L-
function for the cyclotomic Zp-extension is based on the construction of the so
called Coleman-homomorphism [Co]. On the other hand, Perrin-Riou [P-R] and
Kato (unpublished) have constructed a map associated with crystalline p-adic
representations V , which interpolates the exponential map of Bloch-Kato for V
in the cyclotomic Zp-extension of a local field and which is roughly speaking
the inverse of the Coleman-map in case of the Tate-module V = Qp(1). Using
these techniques cases of the Local Tamagawa Number Conjecture for the Tate-
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motive could be proved by Burns and Flach [BF1]. Other cases (l 6= p) have
been proved by S. Yasuda [Y].
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2 Known formulations of the ε-conjecture

In this section we shortly recall the known formulations of the ε-conjecture
starting with the absolute one and finishing with the most general equivariant
statement of [FK]. Through this section let p be a prime number and let K
denote a finite extension of Qp. Also we fix once and for all a generator ξ of
Zp(1)), where Zp(1) is the twist of the trivial representation Zp of GQp by the
cyclotomic character of GQp .

2.1 Cep,K(V ) by B. Perrin-Riou

We consider a potentially semi-stable (pst) p-adic representation V of the ab-
solute Galois group GK . The formulation of the conjecture Cep,K(V ) needs the
following steps to be done (for details see [P-R]):

1. Define ∆̃ep,K(V ) :=
⊗

0≤i≤2

(detQp Hi(K,V ))(−1)i⊗detQp(IndK/QpV ), where

IndK/QpV is the induced representation of V from GK to GQp . Here
the determinants over Qp are just the highest exterior products of the
corresponding Qp-vector spaces.

2. Define ∆K(V ) := (detQp(DK
dR(V )))−1 ⊗ detQp(IndK/QpV ), where BdR

is a Fontaine’s period ring for de Rham representations and DK
dR(V ) =

(BdR ⊗Qp V )GK .

3. Set tV (K) := DK
dR(V )/F il0DK

dR(V ) and Dcris(V ) := (Bcris ⊗Qp V )GK ,
where Bcris is another Fontaine’s period ring for crystalline representa-
tions. Using the exponential map of Bloch-Kato for V and its Kummer
dual representation V ∗(1) deduce an exact sequence (of Qp-spaces) con-
necting the Galois cohomology groups Hi(K,V ) with DK

dR(V )

0→ H0(K,V )→ Dcris(V )→ Dcris(V )⊕ tV (K)→ H1(K,V )
→ Dcris(V

∗(1))∗ ⊕ t∗V ∗(1)(K)→ Dcris(V
∗(1))∗ → H2(K,V )→ 0.

(2.1)

From this exact sequence construct ẽV : ∆K(V )
∼=−→ ∆̃ep,K(V ) identifying

t∗V ∗(1)(K) ∼= Fil0DK
dR(V ) such that

0→ t∗V ∗(1)(K)→ DK
dR(V )→ tV (K)→ 0 (2.2)

is exact.

4. Choose a GK-stable Zp-lattice T of V and define

∆̃ep,K(T ) :=
⊗

0≤i≤2

(detZpHi(K,T ))(−1)i ⊗ detZp(IndK/QpT ).

The general theory of (not necessary commutative) determinants can be
found in Appendix B. Note that ∆̃ep,K(T ) is a Zp-submodule of ∆̃ep,K(V ),
which does not depend on the choice of T .
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5. Set ∆ep,K,Zp(V ) := ẽ−1
V (

⊗
0≤i≤2

(detZp Hi(K,T ))(−1)i ⊗ detZp(IndK/QpT )) –

a Zp-submodule of ∆K(V ).

6. For j ∈ Z set hj = dimK(FiljDK
dR(V )/Filj+1DK

dR(V )) and

Γ∗(j) =

{
Γ(j) = (j − 1)! if j > 0
lims→j(s− j)Γ(s) = (−1)j((−j)!)−1 if j ≤ 0.

Conjecture 2.1 (Cep,K(V )) Let V be a pst p-adic representation of GK . Then
for every ω ∈ ∆K(V ) we have

∆ep,K,Zp(V ) = Zp det(−φ | Dcris(V
∗(1)))

∏
j

Γ∗(−j)−hj(V )[K:Qp]ηV (ω)ω,

where φ denote the Frobenius map acting on Dcris(V
∗(1)) and ηV : ∆K(V ) →

Qurp is described below.

Remark 2.2 Cep,K(V ) has the following functorial properties:

1. The conjectures Cep,K(V ) and Cep,K(V ∗(1)) are equivalent.

2. Let 0 → V ′ → V → V ′′ → 0 be an exact sequence of pst p-adic repre-
sentations of GK . If Cep,K holds for two of the representations V, V ′, V ′′,
then it also holds for the third one.

3. If L/K is a finite extension and if V is a pst representation of GL, the
induced representation IndL/K(V ) from GL to GK is also pst, and we
check that the conjectures Cep,L(V ) and Cep,K(IndL/K(V )) are equivalent.

Proof. See [P-R, C.2.9]. �

Theorem 2.3 Let K be unramified over Qp. The conjecture Cep,K(V ) holds
for every ordinary p-adic representation V .

Proof. See [P-R, C.2.10]. �

The comparison isomorphism

BdR ⊗K DK
dR(V )

∼=−→ BdR ⊗Qp V

gives a canonical Qp-linear injection

ξV : ∆K(V )→ KttH(V ) ⊂ BdR

for a suitable integer tH(V ) and an additive generator t of Zp(1) in Bcris. We

set ξ̃V := t−tH(V )ξV . Let dK be the discriminant of K over Qp and ε(V ) be the
ε-constant associated to V (see [Ta1]).
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Lemma 2.4 If ω ∈ ∆K(V ), then

ξ̃V

|dK |dim(V )/2
ε(V )

∈ Qurp .

In particular, its absolute value ηV (ω) belongs to pZ.

Proof. See [P-R, C.2.8]. �

Remark 2.5 If we set

δV,K/K := det(−φ | Dcris(V
∗(1)))

∏
j

Γ∗(−j)−hj(V )[K:Qp]ηV ◦ ẽ−1
V

then Cep,K(V ) says that the image of ∆̃ep,K(T ) under δV,K/K is Zurp . In other

words, the determinant of the restriction of δV,K/K to ∆̃ep,K(T ), which a priori
is an element of (Qurp )×, belongs to (Zurp )× = K1(Zurp ).

Here the notation for the map δV,K/K was taken from the conjecture 2.6
below, in order to show that all conjectures Cep,K(V ), 2.6 and later 2.18 can be
formulated in one way. Note that the integrality of the determinant of δV,K/K
gives the required relation (mentioned in the introduction) between the ε-constant
and the Galois cohomology groups associated to V , thus is the content of the
absolute ε-conjecture.

2.2 Cep(L/K, V ) by D. Benois and L. Berger

Let L be a finite abelian extension of K and let G = Gal(L/K) denote the
Galois group of L/K. We consider a pst p-adic representation V of GK . The
formulation of the conjecture Cep(L/K, V ) (an equivariant version of Cep,K(V ))
needs the following steps to be done (for details see [BB]):

1. Define

∆ep(L/K, V ) := detQp[G]RΓ(L, V )⊗ detQp[G](IndL/QpV ) ∼=

∼=
⊗

0≤i≤2

(detQp[G] Hi(L, V ))(−1)i ⊗ detQp[G](IndL/QpV ).

2. Construct ∆ep(L/K, V )
∼=−→ (detQp[G](D

L
dR(V )))−1 ⊗ detQp[G](IndL/QpV )

using exact sequence of Qp[G]-modules similar to (2.1) and (2.2) connect-
ing the Galois cohomology groups Hi(L, V ) with DL

dR(V ).

3. Let σ̂ be an element of Gal(Qabp /Qp), which acts trivially on the pnth
roots of unity for all n. Let σ denote the restriction of σ̂ to Qurp and let
aV,L/K := detQp[G](IndL/QpV )(σ̂) ∈ Zp[G]× = K1(Zp[G]).
Define

Zp[G]V,L/K =
{
x ∈ Ẑurp [G] | σ(x) = aV,L/Kx

}
and Qp[G]V,L/K = Qp ⊗Zp Zp[G]V,L/K .

12



4. Normalize the comparison isomorphism

BdR ⊗L DL
dR(V )

∼=−→ BdR ⊗Qp IndL/QpV

by the equivariant ε-constant ε(L/K, V ) (cf. [BB, Lem. 2.4.1]), a power
of ξ, Γ(j)-factors (defined in the similar way as in the subsection 2.1)
and some other constants depending on L/K and dimQpV to construct an
isomorphism

βV,L/K : (detQp[G](D
L
dR(V )))−1 ⊗ detQp[G](IndL/QpV )

∼=−→ Qp[G]V,L/K .

5. Combining (2) and (4) obtain δV,L/K : ∆ep(L/K, V )
∼=−→ Qp[G]V,L/K .

6. Choose a GK-stable Zp-lattice T of V and define

∆ep(L/K, T ) := detZp[G]RΓ(L, T )⊗ detZp[G](IndL/QpT ).

Note that ∆ep(L/K, T ) is a Zp[G]-submodule of ∆ep(L/K, V ), which does
not depend on the choice of T .

Conjecture 2.6 (Cep(L/K, V )) Let V = Qp ⊗Zp T be a pst p-adic representa-
tion of GK and L/K be a finite abelian extension, then

δV,L/K : ∆ep(L/K, T )
∼=−→ Zp[G]V,L/K .

Remark 2.7 Cep(L/K, V ) has the following functorial properties:

1. The conjectures Cep(L/K, V ) and Cep(L/K, V
∗(1)) are equivalent.

2. Let 0→ V ′ → V → V ′′ → 0 be an exact sequence of pst p-adic representa-
tions of GK . If Cep(L/K) holds for two of the representations V, V ′, V ′′,
then it also holds for the third one.

3. If Cep(L/K, V ) holds, and M/K is an extension of K contained in L, then
the conjectures Cep(L/M, V ) and Cep(M/K,V ) hold, too.

4. If Cep(L/K, V ) holds, and η : G → Qp
×

is a character of G, then the
conjecture Cep,K(V (η)) holds.

Theorem 2.8 If K is an unramified extension of Qp and V is a crystalline
representation of GK , then:

1. the conjecture Cep(L/K, V ) holds for all extensions L/K contained in the
cyclotomic extension K∞ = ∪∞n=1K(ζpn).

2. the conjecture Cep(L, V ) = Cep,L(V ) holds for all L contained in the max-
imal abelian extension Qabp of Qp.

3. the conjectures Cep(K,V (η)) hold for all Dirichlet characters η of the Ga-
lois group Gal(K∞/K) of the cyclotomic extension.
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Proof. See [BB, Thm. 4.1.3 and Cor. 4.4.5]. �

Remark 2.9 Cep(L/K, V ) is equivalent to the following statement: the deter-
minant of δV,L/K restricted to ∆ep(L/K, T ) is an element of Zp[G]×V,L/K ={
x ∈ Ẑurp [G]× = K1(Ẑurp [G]) | σ(x) = aV,L/Kx

}
, which gives a relation between

the equivariant ε-constant and the Galois cohomology groups associated to V ,
hence is the content of the equivariant ε-conjecture.

Remark 2.10 The property (4) of Remark 2.7 relates the equivariant ε-conjec-
ture for V to the absolute ε-conjectures for the twisted representations V (η).
Later we will formulate a (possibly non-abelian) equivariant ε-conjecture using
similar relations.

Remark 2.11 The Cep,K(V ) is a special case of Cep(L/K, V ) (cf. Remarks
2.5 and 2.9). In this case the group algebra Zp[G] degenerates to Zp.

2.3 LTNC by T. Fukaya and K. Kato

2.3.1 ε-isomorphisms of de Rham representations

[FK] gives a way to construct a generalization of the isomorphism δV,K/K of
Remark 2.5. We give a short description of this ε-isomorphism (for details see
(loc. cit.)).

Let F be a finite extension of Qp, we set

F̃ := Q̂urp ⊗Qp F = W (Fp)⊗Zp F,

where W (Fp) is the Wittring of Fp.
Let V be a finite dimensional vector space over F endowed with the con-

tinuous action of Gal(Qp/Qp) which is de Rham, hence pst by [Be, Cor. 5.22].
Then analogously to the subsection 2.1 we can define an isomorphism

εF,ξ(V ) = εF,ξ(Qp, V ) : dF̃ (0)
∼=−→ F̃ ⊗F ∆̃ep,Qp(F, V ),

∆̃ep,Qp(F, V ) := dF (RΓ(Qp, V )) · dF (V ).

Here dF is the not necessary commutative determinant, which can be replaced
in this case by the commutative one. For the definition of not necessary commu-
tative determinants, K1-groups and the connection between them see Appendix
B.

The ε-isomorphisms above have the following properties:
(1) Let Ψ(Qp, V )) denote the canonical isomorphism

Ψ(Qp, V )) : RΓ(Qp, V )
∼=−→ RHomF (RΓ(Qp, V ∗(1)), F )[−2]

coming from the local Tate’s duality theory for the Galois cohomology and let
dF (Ψ(Qp, V )) denote the map, which is inverse to dF (Ψ(Qp, V )) with respect
to the composition (cf. Appendix B). Then

εF,ξ(V ) · εF,−ξ(V ∗(1))∗ = dF (Ψ(Qp, V )) · dF (ξ : V (−1)→ V )

14



(see the remark below).
(2) For an exact sequence 0→ V ′ → V → V ′′ → 0 of de Rham representa-

tions we have
εF,ξ(V ) = εF,ξ(V

′) · εF,ξ(V ′′).
(3) Let ϕp : F̃ → F̃ be the ring homomorphism induced by x 7→ xp of Fp

and the identity map of F . Let τp ∈ Gal(Qabp /Qp) be an element such that

κ(τp) = 1, which induces x 7→ xp on Fp. Then, as an element of

Isom(dF (0), ∆̃ep,Qp(F, V ))×K1(F ) K1(F̃ ),

εF,ξ(V ) belongs to

Isom(dF (0), ∆̃ep,Qp(F, V ))×K1(F )
{
x ∈ K1(F̃ ) | ϕp(x) = det(τp | V )−1 · x

}
.

(4) Let c ∈ Z×p and let σc be the unique element of the inertia subgroup of

Gal(Qabp /Qp) such that σc(ζpn) = ζcpn for any n ≥ 1. Then

εF,ξc(V ) = [V, σc] · εF,ξ(V ),

where [V, σc] is an element of K1(F ).

Remark 2.12 Here we give a little modified version of the property (1) of the
ε-isomorphisms of de Rham representations (cf. [FK, Prop. 3.3.8]). Note also,
that both sides of the equality of the property (1) are invariant when we replace
V by V ∗(1) and then take the F -dual.

Proof. First we write down the definitions of the maps, which appear in the
property (1):

• εF,ξ(V ) : dF̃ (0)
∼=−→ F̃ ⊗F {dF (RΓ(Qp, V )) · dF (V )},

• εF,−ξ(V ∗(1))∗ : F̃ ⊗F
{(

dF (RΓ(Qp, V ∗(1))) · dF (V ∗(1))
)∗} ∼=−→ dF̃ (0)∗,

• dF (Ψ(Qp, V )) : dF

(
RΓ(Qp, V ∗(1))∗

) ∼=−→ dF (RΓ(Qp, V )),

• dF (ξ : V (−1)→ V ) : dF (V (−1))
∼=−→ dF (V ).

Using the fact dF (−)∗ = dF ((−)∗) we get:

dF (V ∗(1))∗ = dF (V (−1)), dF̃ (0)∗ = dF̃ (0).

If we drop the tensor product with F̃ on both sides, then we have the following
maps in the equality of the property (1):

(left hand side) : dF̃ (0) · dF (V (−1)) · dF (RΓ(Qp, V ∗(1))∗)
∼=−→

∼=−→ dF (V ) · dF (RΓ(Qp, V )) · dF̃ (0);

(right hand side) : dF (RΓ(Qp, V ∗(1))∗) ·dF (V (−1))
∼=→ dF (RΓ(Qp, V )) ·dF (V ).

Thus the both sides are isomorphisms of the same objects. The rest of the
proof is same as the proof of Proposition 3.3.8 in [FK]. �
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Remark 2.13 Let F = Qp. If we consider the map, which is inverse to εF,ξ(V )
with respect to the composition, then we get the map δV,K/K of Cep(L/K, V ) also
mentioned in Remark 2.5. Of course the same is true for an F if we extend the
construction of δV,K/K to this case.

For F 6= Qp we can formulate a generalization of Cep,K(V ). Let OF be

the ring of integers of F and ÕF := W (Fp) ⊗Zp OF . We choose a GQp -stable

OF -lattice T in V and define an OF -submodule of ∆̃ep,Qp(F, V ) by

∆̃ep,Qp(OF , T ) := dOF (RΓ(Qp, T )) · dOF (T ),

which is independent of the choice of T . Then we get the following conjecture:

Conjecture 2.14 (Cep,K(V, F )) The restriction of εF,ξ(V ) to ∆̃ep,Qp(OF , T )
is an element of

Isom(dOF (0), ∆̃ep,Qp(OF , T ))×K1(OF )
{
x ∈ K1(ÕF ) | ϕp(x) = det(τp | T )−1 · x

}
.

In other words, there exists a unique element εOF ,ξ(T ) of the set above
such that Qp ⊗Zp εOF ,ξ(T ) = εF,ξ(V ). Here we use the fact that the maps

K1(OF ) = O×F → K1(F ) = F× and K1(ÕF ) → K1(F̃ ) are injective, for both

OF and ÕF are commutative semilocal rings (see [CR 2, Prop. 45.12]).

2.3.2 ε-isomorphism. The general case

We formulate the conjecture in the original setting of [FK].

Definition 2.15 A (not necessary commutative) ring Λ is called an adic ring,
if it satisfies the following condition:

There exists a two sided ideal I of Λ, such that Λ/In is finite of order a
power of p for any n ≥ 1 and such that

Λ
∼=−→ lim←−

n

Λ/In.

Definition 2.16 For an adic ring Λ we define Λ̃ := lim←−
n

(W (Fp) ⊗Zp Λ/Jn),

where J denotes the Jacobson radical of Λ.

Remark 2.17 Let Qabp be the maximal abelian extension of Qp in Qp. Then the

canonical map σ 7→ [T, σ] ∈ K1(Λ) factors through the quotient Gal(Qabp /Qp)
of Gal(Qp/Qp) by the closure of the commutator subgroup, this is because the
target group K1(Λ) is abelian (hence the commutator subgroup is killed). Thus
we have the induced homomorphism:

[T, ?] : Gal(Qabp /Qp)→ K1(Λ).
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Let T be a finitely generated (f.g.) projective Λ-module endowed with a
continuous Λ-linear action of Gal(Qp/Qp). We set

∆̃ep,Qp(Λ,T) := dΛ(RΓ(Qp,T)) · dΛ(T).

Conjecture 2.18 (LTNC) There exists a unique way to associate an isomor-
phism

εΛ,ξ(T) = εΛ,ξ(Qp,T) : dΛ̃(0)
∼=−→ Λ̃⊗Λ ∆̃ep,Qp(Λ,T),

i.e.
εΛ,ξ(T) ∈ Isom(dΛ(0), ∆̃ep,Qp(Λ,T))×K1(Λ) K1(Λ̃)

to each triple (Λ,T, ξ) satisfying the following (1)-(6).

1. Let Ψ(Qp,T)) denote the canonical isomorphism

Ψ(Qp,T)) : RΓ(Qp,T)
∼=−→ RHomΛo(RΓ(Qp,T∗(1)),Λo)[−2]

coming from the local Tate’s duality theory for the Galois cohomology and
Λo denote the opposite ring of Λ. Then

εΛ,ξ(T) · εΛ,−ξ(T∗(1))∗ = dΛ(Ψ(Qp,T)) · dΛ(ξ : T(−1)→ T).

2. For triples (Λ,T, ξ), (Λ,T′, ξ), (Λ,T′′, ξ) with common Λ and ξ and with
an exact sequence

0 // T′ // T // T′′ // 0,

the canonical isomorphisms

dΛ(RΓ(Qp,T)) ∼= dΛ(RΓ(Qp,T′)) · dΛ(RΓ(Qp,T′′))

and
dΛ(T) ∼= dΛ(T′) · dΛ(T′′)

send εΛ,ξ(T) to εΛ,ξ(T′) · εΛ,ξ(T′′).

3. Let ϕp : Λ̃ → Λ̃ be the ring homomorphism induced by x 7→ xp of Fp and
the identity map of Λ. Let τp ∈ Gal(Qabp /Qp) be the unique element such

that κ(τp) = 1 which induces x 7→ xp on Fp. Then εΛ,ξ(T) belongs to

Isom(dΛ(0), ∆̃ep,Qp(Λ,T))×K1(Λ)
{
x ∈ K1(Λ̃) | ϕp(x) = [T, τp]−1 · x

}
.

4. Let (Λ,T, ξ), (Λ′,T′, ξ) be triples with common ξ, and let Y be a finitely
generated projective Λ′-module endowed with a continuous right action of
Λ, which is compatible with the action of Λ′. Assume T′ = Y ⊗Λ T. Then
Y⊗Λ sends εΛ,ξ(T) to εΛ′,ξ(T′).
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5. Let c ∈ Z×p and let σc be the unique element of the inertia subgroup of

Gal(Qabp /Qp) such that σc(ζpn) = ζcpn for any n ≥ 1. Then

εΛ,ξc(T) = [T, σc] · εΛ,ξ(T).

6. Let L be a finite extension of Qp, let V be a finite dimensional L-vector
space endowed with a continuous action of Gal(Qp/Qp) which is de Rham,
and let T be an OL-sublattice of V which is stable under the action of
Gal(Qp/Qp). Then εOL,ξ(T ) induces εL,ξ(V ) of the subsubsection 2.3.1.

Remark 2.19 The ε-isomorphisms εΛ,ξ(T) for (not necessary commutative) Λ
are related to ε-isomorphisms of de Rham representations in the following way.
Let L be a finite extension of Qp, let n ≥ 1, and let ρ : Λ → Mn(L) be a
continuous ring homomorphism. Assume V = Ln ⊗Λ T is a de Rham repre-
sentation of Gal(Qp/Qp) over L. Then the above conditions (4) and (6) tell
that Ln⊗Λ sends εΛ,ξ(T) to εL,ξ(V ), hence LTNC is the content of the (not
necessary abelian) equivariant ε-conjecture in the sense of the introduction (cf.
[V, Conj. 5.9]).

In the next section we formulate an analogue of Cep(L/K, V ) for not neces-
sary abelian extensions L/K (see Conjecture 3.6) and compare the conjectures
Cep(L/K, V ), LTNC and 3.6 (see Remarks 3.12 and 3.13). For a different for-
mulation of the local not necessary commutative Tamagawa number conjecture
see [BF, §5].
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3 Non-abelian analogue of Cep(L/K, V )

3.1 Formulation

The goal of this subsection is to formulate an analogue Cnaep (L/K, V ) of the
Cep(L/K, V ) for an arbitrary (not necessary abelian) finite extension L of K,
which will be a generalization of conjectures 2.1 and 2.6 and will give a right
candidate for the ε-isomorphism associated to the triple (Zp[G], IndL/QpT, ξ) in
LTNC.

Let p be a prime, we introduce a tower of finite Galois field extensions
Qp ⊆ K ⊆ L and denote by G = Gal(L/K) the Galois group of L/K. Further,
let V be a p-adic de Rham representation of GK and T be a GK-stable Zp-lattice
in V . We denote IndL/QpT by T, Zp[G] by Λ and Qp[G] by Ω. Then Λ is an
adic ring in the sense of subsubsection 2.3.2 and T is a f.g. projective Λ-module
endowed with a continuous Λ-linear action of GQp (see Appendix A).

To formulate the conjecture we have to work with not necessary commutative
determinants. For the definition and the properties of them see Appendix B. To
apply the determinants we have to check, that every considered module (resp.
complex of modules) admits a finite projective resolution (resp. is perfect) over
R, where R is either Λ or Ω. For this see Appendix A and use the following
theorem:

Theorem 3.1 Let R be an adic ring and X be a f.g. projective R-module en-
dowed with a continuous R-linear action of GQp . Then

1. Hm(GQp , X)
∼=−→ lim←−

n

Hm(GQp , X/J
nX), where J is the Jacobson radical

of R.

2. RΓ(Qp, X) is a perfect complex over R.

3. Let R′ be another adic ring. Let Y be a f.g. projective R′-module endowed
with a continuous right action of R which commutes with the action of R′.
Then

Y ⊗LR RΓ(Qp, X)
∼=−→ RΓ(Qp, Y ⊗R X).

Here an element σ of GQp acts on Y ⊗R X by 1⊗ σ. In particular, for a
ring homomorphism R→ R′, we have

R′ ⊗LR RΓ(Qp, X)
∼=−→ RΓ(Qp, R′ ⊗R X).

Proof. See [FK, Prop. 1.6.5]. �

Remark 3.2 For the theorem above we used the following fact: GQp is a profi-
nite group satisfying the following conditions

• Hm(GQp ,M) is finite for any finite discrete abelian group M of order a
power of p endowed with a continuous action of GQp and for any m.
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• There exists an integer d > 0 such that Hm(GQp ,M) = 0 for any finite
discrete abelian group M of order a power of p endowed with a continuous
action of GQp and for any m > d.

Proof. See [FK, Rem. 1.6.2]. �

As next we prove

Proposition 3.3 Let R be an adic ring, then

1. R̃ ∼= Ẑurp ⊗̂ZpR.

2. Let R′ be another adic rings. Let Y be a f.g. projective R′-module endo-
wed with a continuous right action of R which commutes with the action
of R′ such that Y is also f.g. as a right R-module, then R̃′⊗R′ Y ∼= Y ⊗R R̃
as R′ −R-bimodules.

Proof. (1) By Definition 2.16 R̃ = lim←−
n

(W (Fp) ⊗Zp R/J
n), where J denotes

the Jacobson radical of R.
Using W (Fp) = Ẑurp , we have

R̃ = lim←−
n

(Ẑurp ⊗Zp R/J
n).

Since R/Jn are finite Zp-modules by [Br, Lem. 2.1(ii)]

lim←−
n

(Ẑurp ⊗Zp R/J
n) ∼= lim←−

n

(Ẑurp ⊗̂ZpR/J
n),

and by [Br, Lem. A.4]

lim←−
n

(Ẑurp ⊗̂ZpR/J
n) ∼= Ẑurp ⊗̂Zp lim←−

n

R/Jn ∼= Ẑurp ⊗̂ZpR.

(2) Since Y is f.g. as a R′-module (resp. a right R-module), we have again by
[Br, Lem. 2.1(ii)]

R̃′ ⊗R′ Y ∼= R̃′⊗̂R′Y ∼= Ẑurp ⊗̂ZpY
∼= Y ⊗̂Zp Ẑurp ∼= Y ⊗R R̃.

�

We introduce ∆ep(L/K, T ) := dΛ(RΓ(Qp,T)) · dΛ(T). The following is a
basic support for the conjecture.

Theorem 3.4 Let R be an adic ring and let Y be a f.g. projective R-module
endowed with a continuous GQp-action, then [RΓ(Qp, Y )] + [Y ] = 0 in K0(R).

That is, the set Isom
(
dR(0),dR(RΓ(Qp, Y )) · dR(Y )

)
is not empty.

Proof. See [FK, Prop. 3.1.3]. �
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The conjecture Cnaep (L/K, V ) will say, that there exists a special
isomorphism

εΛ,ξ(T) : dΛ̃(0)→ Λ̃⊗Λ ∆ep(L/K, T ),

i.e.
εΛ,ξ(T) ∈ Isom

(
dΛ̃(0), Λ̃⊗Λ ∆ep(L/K, T )

)
.

Remark 3.5 Consider ε ∈ Isom(dΛ̃(0), Λ̃ ⊗Λ ∆ep(L/K, T )) =: Ĩ. By the def-

inition the set Ĩ is a K1(Λ̃)-torsor, such that if we fix some element c̃an of Ĩ,
then ε = c̃an · k̃ for some k̃ ∈ K1(Λ̃).

As next we define the set I := Isom(dΛ(0),∆ep(L/K, T )) ×K1(Λ) K1(Λ̃) as

the quotient of Isom(dΛ(0),∆ep(L/K, T ))×K1(Λ̃) by the action of K1(Λ) given
by

(x, y) 7→ (x ·k, k̃ ·y), ∀x ∈ Isom(dΛ(0),∆ep(L/K, T )), y ∈ K1(Λ̃), k ∈ K1(Λ).

Note, that Isom(dΛ(0),∆ep(L/K, T )) is a K1(Λ)-torsor by the definition and k̃

denotes the image of k ∈ K1(Λ) under the map K1(Λ)
Λ̃⊗Λ // K1(Λ̃) . We want

to show
I ∼= Ĩ (not canonically).

For this we fix an element can ∈ Isom(dΛ(0),∆ep(L/K, T )) and denote by c̃an

its image in Ĩ, i.e. c̃an = Λ̃⊗Λ can. We define the maps:

ϕ : Ĩ → I, ĩ = c̃an · k̃ 7→ (can, k̃);

ψ : I → Ĩ , (x, y) = (can · sx, y) 7→ x̃ · y = c̃an · s̃x · y, sx ∈ K1(Λ),

where x̃ = Λ̃⊗Λ x. The maps are inverse to each other, thus are bijections.
Finally, we want to define the actions of K1(Λ) on the sets I and Ĩ. Let ε be

an element of Ĩ, then the product of ε with some element s ∈ K1(Λ) is defined
as multiplication of ε with the image s̃ of s in K1(Λ̃). Further, for each pair
(x, y) ∈ I, we define

s · (x, y) := (x · s, y)
!
= (x · s · s−1, s̃ · y) = (x, s̃ · y),

where the equality
!
= follows from the definition of the set I. Then the maps

ϕ and ψ commute with the K1(Λ)-action, thus are bijections of K1(Λ)-sets.
It follows from Theorem 6.52, that the actions of K1(Λ) factorize over the
quotient Det(K1(Λ)) ∼= K1(Λ)/SK1(Λ), as SK1(Λ) is the kernel of the map

K1(Λ)
Λ̃⊗Λ // K1(Λ̃) .

At last we need the following fact:
Let ρ : G→ GLn(F ), n ≥ 1 be a (irreducible) representation of G over some

finite extension F of Qp. Then ρ induces a (continuous) ring homomorphism
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ρ : Λ → Mn(OF ). From the properties of the determinants and Proposition
3.3(2) we know that the image of εΛ,ξ(T) under the functor OnF ⊗Λ − is a map

dÕF (0)→ ÕF ⊗OF {dOF (RΓ(Qp,OnF ⊗Λ T)) · dOF (OnF ⊗Λ T)} ,

which after Qp ⊗Zp − becomes

dF̃ (0)→ F̃ ⊗F {dF (RΓ(Qp, Fn ⊗Λ T)) · dF (Fn ⊗Λ T)} .

In the following we abuse the notation and speak about (irreducible) repre-
sentations ρ : Λ→Mn(F ) and the images under the functor Fn⊗Λ−. Such an
image always means the map induced by the image under the functor OnF ⊗Λ−.

Setting WT,ρ := Fn ⊗Λ T and using the following commutative diagram

T //
� _

��

IndL/QpT // Fn ⊗Λ IndL/QpT

∼=
��

V // ρ∗ ⊗Qp V // IndK/Qp(ρ∗ ⊗Qp V ),

(3.1)

where ρ∗ denotes the contragredient (=dual) representation of ρ and the right
hand side vertical map is an isomorphism of representations of GQp over F , we
see that WT,ρ is a de Rham representation of GQp over F for all ρ.

Now we are ready to formulate the conjecture keeping the above notation.

Conjecture 3.6 (Cnaep (L/K, V )) For any choice of T and ξ, there exists a
unique (see Proposition 3.9 below) isomorphism

εΛ,ξ(T) : dΛ̃(0)→ Λ̃⊗Λ ∆ep(L/K, T )

(i.e. εΛ,ξ(T) ∈ Isom(dΛ(0),∆ep(L/K, T ))×K1(Λ) K1(Λ̃) by Remark 3.5)
satisfying the following condition:

(?) Let ρ : Λ → GLn(F ), n ≥ 1 be a (irreducible) representation. Then
the image εF,ξ(WT,ρ) of εΛ,ξ(T) under Fn ⊗Λ − is the ε-isomorphism of the de
Rham representation WT,ρ described in subsubsection 2.3.1.

The following propositions are comments on the conjecture.

Proposition 3.7 Cnaep (L/K, V ) is independent of the choice of ξ, i.e. if εΛ,ξ(T)
exists for one choice of ξ satisfying (?), then also for all other choices.

Proof. Let ξ′ = ξc for some c ∈ Z×p be another generator of Zp(1). We assume,
that the conjecture Cnaep (L/K, V ) holds, i.e. there exists a unique isomorphism

εΛ,ξ(T). Let σc be the unique element of the inertia subgroup of Gal(Qabp /Qp),
such that σc(ζpn) = ζcpn for any n ≥ 1, then we define an ε-isomorphism for ξ′

as
εΛ,ξ′(T) := [T, σc] · εΛ,ξ(T).

We have to prove, that εΛ,ξ′(T) is a well defined map satisfying condition (?).
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εΛ,ξ(T) is an element of aK1(Λ)-set Isom(dΛ(0),∆ep(L/K, T ))×K1(Λ)K1(Λ̃),
thus εΛ,ξ′(T) is also an element of this set, as [T, σc] ∈ K1(Λ), hence εΛ,ξ′(T) is
well defined.

Further, let ρ : Λ→Mn(F ) be a (irreducible) representation. Since εΛ,ξ(T)
satisfies the condition (?), the image εF,ξ(WT,ρ) of εΛ,ξ(T) under Fn⊗Λ− is the
ε-isomorphism of the de Rham representation WT,ρ described in subsubsection
2.3.1.

On the other hand, the image of εΛ,ξ′(T) under Fn ⊗Λ − is [WT,ρ, σc] ·
εF,ξ(WT,ρ). The condition (?) for εΛ,ξ′(T) follows now from the property (4) of
the ε-isomorphisms of subsubsection 2.3.1. �

Proposition 3.8 Cnaep (L/K, V ) is independent of the choice of T , i.e. if εΛ,ξ(T)
exists for one choice of T satisfying (?), then also for all other choices.

Proof. Let T ′ be an another Zp-sublattice of V . By replacing T by pnT ⊆
T ∩ T ′ we can assume that T ⊆ T ′. Then there is an exact sequence of Zp-
representations of GK :

0 // T // T′ // T′/T // 0.

Using the facts, that RΓ(Qp, IndL/Qp(−)) ∼= RΓ(L,−) and that IndL/Qp− is an
exact functor, we get from the exact sequence above an exact triangle

RΓ(L, T ) // RΓ(L, T ′) // RΓ(L, T ′/T ) // RΓ(L, T ) [1]

of perfect complexes of Λ-modules and an exact sequence of Λ-modules:

0 // T // T′ // IndL/Qp(T ′/T ) // 0.

Note, that all Λ-modules in the exact sequence admit finite projective resolutions
(see Appendix A). Thus we have the following canonical isomorphisms

dΛ(T′) ∼= dΛ(T) · dΛ(IndL/Qp(T ′/T )),

dΛ(RΓ(Qp,T′)) ∼= dΛ(RΓ(Qp,T)) · dΛ(RΓ(Qp, IndL/Qp(T ′/T ))).

Now let Cnaep (L/K, V ) holds for T , i.e εΛ,ξ(T) exists. From Theorem 3.4
we know, that dΛ(0) is (not canonically) isomorphic to ∆ep(L/K, T

′/T ), so
that we choose such an isomorphism Φ : dΛ(0) → ∆ep(L/K, T

′/T ) and define
εΛ,ξ(T′) = εΛ,ξ(T) · Φ. We see that εΛ,ξ(T′) is an isomorphism from dΛ̃(0) to

Λ̃ ⊗Λ ∆ep(L/K, T ), so it only remains to prove, that it satisfies condition (?).
Since T ′/T is a finite Zp-module, hence torsion, we have

WT,ρ = IndK/Qp(ρ∗ ⊗Qp V ) = WT′,ρ

for all (irreducible) representations ρ : Λ→Mn(F ) and Φ becomes a canonical
isomorphism after Qp⊗Zp−. It follows that the images of εΛ,ξ(T′) and εΛ,ξ(T)·Φ
under Fn⊗Λ− are equal for all ρ, thus εΛ,ξ(T′) satisfies condition (?), for εΛ,ξ(T)
does and Fn ⊗Λ Φ is trivial. �

23



Proposition 3.9 (uniqueness) If εΛ,ξ(T) exists, it is uniquely determined by
condition (?).

Proof. Let εΛ,ξ(T) and ε′Λ,ξ(T) be two ε-isomorphisms, then

ε′Λ,ξ(T) ◦ εΛ,ξ(T) : dΛ̃(0)
∼=−→ dΛ̃(0)

can be viewed as an element k of K1(Λ̃) (see Appendix B) and we have to
prove that k = 1. For this we introduce the following commutative diagram of
homomorphisms of K1-groups (see section 6)

1

��
SK1(Λ)

��
1 // SK1(Λ) // K1(Λ) //

��

K1(Λ̃)� _

��
K1(Ω)

� � // K1(Ω̃).

(3.2)

By definition and Remark 3.5 the element k lies in the image of K1(Λ) in
K1(Λ̃) and can be mapped further to some element inK1(Ω̃). Using Wedderburn
decomposition of K1(Ω) and the commutativity of the square in the diagram
(3.2) we can also view k as an image in K1(Ω̃) of some element of K1(Ω), such

that k = (kχ) ∈
∏
χ∈E(Q̂urp ⊗QpQp(χ))×, where the product extends over the set

E of representatives of the Qp-equivalence classes of the irreducible characters
of G over Qp and Qp(χ) is obtained by adjoining to Qp the values of χ.

On the other hand, let ρχ : Λ→Mnχ(Qp(χ)) be an irreducible (continuous)
representation, such that χ is the character of ρχ, then we get the component
kχ as the image of k under the map induced by Qp(χ)nχ⊗Λ. Since εΛ,ξ(T) and
ε′Λ,ξ(T) satisfy condition (?), every component kχ = 1, thus k = 1, as the map

K1(Λ̃)→ K1(Ω̃) is injective. �

Proposition 3.10 Let R be an adic ring. Let ϕp : R̃ → R̃ be the ring homo-
morphism induced by x 7→ xp of Fp and the identity map of R. Let κ denote the

cyclotomic character from Gal(Qp/Qp) to Z×p characterized by σ(ζpn) = ζ
κ(σ)
pn

(∀n ≥ 1), and let τp ∈ Gal(Qabp /Qp) be the unique element such that κ(τp) = 1

which induces x 7→ xp on Fp. For any a ∈ K1(R̃), the set

K1(R̃)a :=
{
x ∈ K1(R̃) | ϕp(x) = a · x

}
is not empty.
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Proof. See [FK, Prop. 3.4.5]. �

Note, that by Theorem 6.52 the set K1(Λ̃)[T,τp]−1 is a Det(K1(Λ))-torsor.

Proposition 3.11 If εΛ,ξ(T) exists, then it belongs to

Isom(dΛ(0),∆ep(L/K, T ))×K1(Λ) K1(Λ̃)[T,τp]−1

(cf. the remark above and the comment at the end of Remark 3.5).

Proof. Let

εΛ,ξ(T) = (ε1, ε2) ∈ Isom(dΛ(0),∆ep(L/K, T ))×K1(Λ) K1(Λ̃).

We have to prove that ε2 is in K1(Λ̃)[T,τp]−1 . There exists a k ∈ K1(Λ̃) such that

ϕp(ε2) = k · ε2. Similar to the proof of Proposition 3.9 we view ε2 = ((ε2)χ)χ∈E
as an element of K1(Ω̃). The map K1(Λ̃) → K1(Ω̃) is a group homomorphism
commuting with the action of ϕp, hence ϕp(ε2) =

(
kχ · (ε2)χ

)
χ∈E .

It follows from the condition (?) for εΛ,ξ(T) and the property (3) of ε-
isomorphisms of de Rham representations described in subsubsection 2.3.1, that

kχ =
[
Qnχp (χ)⊗Λ T, τp

]−1
. But the element [T, τp]−1 ∈ K1(Λ̃) has the same im-

age in K1(Ω̃) as k, thus again from the injectivity of the map K1(Λ̃)→ K1(Ω̃)

we deduce that k = [T, τp]−1
in K1(Λ̃). �

Remark 3.12 For L/K abelian, Cep(L/K, V ) and Cnaep (L/K, V ) are equiva-
lent.

Proof. We prove the equivalence of conjectures Cep(L/K, V ) and Cnaep (L/K, V )
for L/K abelian. We have δV,L/K : ∆ep(L/K, T ) → Zp[G]V,L/K and εΛ,ξ(T)

should be a map εΛ,ξ(T) : Zp[G]V,L/K
∼=−→ ∆ep(L/K, T ) satisfying condition

(?).
Now if Cep(L/K, V ) holds, i.e. δV,L/K is an isomorphism, then we set

εΛ,ξ(T) := δV,L/K : Zp[G]V,L/K
∼=−→ ∆ep(L/K, T ). From the commutative di-

agram 3.1 and the construction of δV,L/K , which for L = K is the same as
the construction of (an inverse of) ε-isomorphisms of de Rham representations
described in subsubsection 2.3.1, we deduce that δV,L/K ( and thus εΛ,ξ(T))
satisfies condition (?), thus Cnaep (L/K, V ) holds.

Conversely, if Cnaep (L/K, V ) holds, i.e. εΛ,ξ(T) exists, then we view δV,L/K

as a map ∆ep(L/K, V )
∼=−→ Qp[G]V,L/K and show that the restriction of δV,L/K

to ∆ep(L/K, T ) is an isomorphism. For this we consider

δV,L/K ◦Qp ⊗Zp εΛ,ξ(T) : Qp[G]V,L/K
∼=−→ Qp[G]V,L/K

as an element k ∈ K1(Ω̃). From the construction of δV,L/K and the commu-
tative diagram 3.2 we know, that k = (kχ)χ∈E lies in the image of K1(Ω) in

K1(Ω̃), where χ are one-dimensional characters, as G is abelian. By previous

25



considerations δV,L/K satisfies condition (?), where we extend each character χ
to a homomorphism χ : Ω→Mn(F ). As εΛ,ξ(T) also satisfies condition (?) we
deduce that kχ = 1 for all χ, hence Qp ⊗Zp εΛ,ξ(T) = δV,L/K . Since εΛ,ξ(T)
is the restriction of Qp ⊗Zp εΛ,ξ(T) to the integral structure induced by T , its
inverse gives the restriction of δV,L/K to ∆ep(L/K, T ) and is an isomorphism.
This implies Cep(L/K, V ). �

Remark 3.13 The LTNC implies Cnaep (L/K, V ). Conversely, Cnaep (L/K, V )
implies the existence and uniqueness of the ε-isomorphism associated to the
triple (Zp[G], IndL/QpT, ξ) in LTNC.

Proof. Indeed, Λ = Zp[G] is an adic ring and T = IndL/QpT is a f.g. pro-
jective (left) Λ-module endowed with a continuous action of GQp , so that if
LTNC holds, then the conjectures Cnaep (L/K, V ) hold for all extensions L/K
and all de Rham representations V simultaneously (for condition (?) see Remark
2.19). Conversely, if Cnaep (L/K, V ) holds, then the map εΛ,ξ(T) gives a unique
(cf. Proposition 3.9) candidate for the ε-isomorphism associated to the triple
(Zp[G], IndL/QpT, ξ) in LTNC. �

For the better illustration we put all conjectures stated in previous sections
into the following diagram

Cep,K(V ) ks L=K +3
KS

F=Qp
��

Cep(L/K, V ) ks L/K abelian +3 Cnaep (L/K, V )
KS
(Zp[G],IndL/QpT,ξ)

��
Cep,K(V, F ) ks (OF ,T,ξ)

22 LTNC,

where dotted arrows mean that the corresponding conjecture gives a candidate
for the ε-isomorphism in LTNC.

3.2 Functorial properties

Proposition 3.14 Cnaep (L/K, V ) has the following functorial properties:

1. The conjectures Cnaep (L/K, V ) and Cnaep (L/K, V ∗(1)) are equivalent.

2. Let 0 → V ′ → V → V ′′ → 0 be an exact sequence of p-adic de Rham
representations of GK . If Cnaep (L/K) holds for two of the representations
V, V ′, V ′′, then it also holds for the third one.

3. Let M/K be a Galois extension of K contained in L. If Cnaep (L/K, V )
holds, then the conjectures Cnaep (L/M, V ) and Cnaep (M/K,V ) hold, too.

26



4. Let ρ : Λ → Mn(OF ) be a (irreducible) representation of G over F . If
Cnaep (L/K, V ) holds, then Cep,K(V, F ) holds for V = ρ∗ ⊗Qp V .

The proof of the properties (1)− (3) is pretty long and is given in the following
subsubsections for each statement of the proposition separately. The property
(4) follows directly from condition (?), the fact before Cnaep (L/K, V ) (the defi-
nition of Fn ⊗Λ −) and the formulation of Cep,K(V, F ).

Proof of (1)

We give the proof in the situation, where the dual conjecture Cnaep (L/K, V ∗(1))
holds, the other direction being analogous. We choose a GK-stable Zp-lattice T
in V and set T ∗(1) to be the dual Zp-lattice in V ∗(1). First we notice

Proposition 3.15 Let V be a p-adic representation of GQp , then V is de Rham
if and only if V ∗(1) is de Rham.

Proof. See [Fo, Prop. 1.5.2]. �

The canonical isomorphism:

Ψ(Qp,T) : RΓ(Qp,T)
∼=−→ RHomΛo(RΓ(Qp,T∗(1)),Λo) [−2]

induces

dΛ(Ψ(Qp,T)) : dΛ(RΓ(Qp,T))
∼=−→ dΛ(RHomΛo(RΓ(Qp,T∗(1)),Λo)),

where

dΛ(RHomΛo(RΓ(Qp,T∗(1)),Λo)) = (dΛo(RΓ(Qp,T∗(1))))∗

by the definition (see Appendix B).
Next we show the comparison between two duality theories:

Proposition 3.16 The modules T∗(1) and IndL/Qp(T ∗(1)) are isomorphic as
right Λ-modules endowed with a continuous GQp-action.

Proof. We view left Λo-modules (for example T∗) as right Λ-modules, then
from Proposition 7.4 we have

IndL/Qp(T ∗(1)) ∼= IndK/Qp

(
(HomZp(T,Zp)⊗Zp Zp(1))⊗Zp Λ

)
and

(HomZp(T,Zp)⊗Zp Zp(1))⊗Zp Λ ∼= HomZp(T,Zp)⊗Zp Λ(1)

as right Λ-modules with a continuous GQp -action, where Λ(1) is the twist of the
trivial GK-module Λ by the cyclotomic character of GK .

On the other hand,

T∗(1) ∼= IndK/Qp(HomΛ(Λ⊗Zp T,Λ))⊗Λ Λ(1)
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again as right Λ-modules with a continuous GQp -action, where Λ(1) is now the
twist of the trivial GQp -module Λ by the cyclotomic character of GQp .

Since (IndK/QpM)(1) ∼= IndK/Qp(M(1)) for an arbitrary GK-module M (see
[S, p. 29]), it is enough to prove that HomZp(T,Zp)⊗Zp Λ ∼= HomΛ(Λ⊗Zp T,Λ),
as right Λ-modules with a continuous GK-action. But this is obvious, for all
modules are projective Λ-modules (resp. Zp-modules) and the GK-action is Λ-
linear (resp. Zp-linear). �

Now we define

εΛ,ξ(T) := dΛ(ξ : T(−1)→ T) · (εΛ,ξ−1(T∗(1))∗)−1 · dΛ(Ψ(Qp,T)),

then
εΛ,ξ(T) : dΛ̃(0)→ Λ̃⊗Λ ∆̃ep(L/K, T ).

To see it we recall all maps used in the definition of εΛ,ξ(T):

• dΛ(ξ : T(−1)→ T) : dΛ(T(−1))→ dΛ(T),

• dΛ(Ψ(Qp,T)) : dΛ(RHomΛo(RΓ(Qp,T∗(1)),Λo))→ dΛ(RΓ(Qp,T)),

• θ = εΛ,ξ−1(T∗(1))∗ : Λ̃ ⊗Λ ∆̃ep,Qp(Λo,T∗(1))∗ → dΛ̃(HomΛo(0,Λo)) =
dΛ̃(0),

• θ−1 : Λ̃⊗Λ

(
∆̃ep,Qp(Λo,T∗(1))∗

)−1 → (dΛ̃(0))−1 = dΛ̃(0).

Since HomΛo(T∗(1),Λo) ∼= T(−1), it follows that

εΛ,ξ(T) = dΛ(ξ : T(−1)→ T) · (εΛ,ξ−1(T∗(1))∗)−1 · dΛ(Ψ(Qp,T))

is an isomorphism between
dΛ̃(0) = Λ̃⊗Λ {dΛ(T(−1)) · (dΛ(RHomΛo(RΓ(Qp,T∗(1)),Λo)))−1·

·(dΛ(HomΛo(T∗(1),Λo)))−1 · dΛ(RHomΛo(RΓ(Qp,T∗(1)),Λo))}

and

Λ̃⊗Λ {dΛ(T) · dΛ(0) · dΛ(RΓ(Qp,T))} = Λ̃⊗Λ {dΛ(T) · dΛ(RΓ(Qp,T))}.

Next we verify condition (?). Let ρ : Λ → Mn(F ) be a (irreducible) repre-
sentation of G, then the contragredient ρ∗ : Λo →Mn(F ) of ρ induces a functor
(Fn)t ⊗Λo −, where (Fn)t denotes the transpose of Fn.

Proposition 3.17 (Fn)t⊗Λo (T∗(1)) is isomorphic to (Fn⊗Λ T)∗(1) as a rep-
resentation of GQp over F , i.e.

WT∗(1),ρ∗ := (Fn)t ⊗Λo (T∗(1)) ∼= (Fn ⊗Λ T)∗(1) =: (WT,ρ)
∗(1).

Proof. The proof is similar to the proof of Proposition 3.16 and uses the
facts, that all modules are projective Λ-modules (resp. F -modules) and the
GQp -action is Λ-linear (resp. F -linear). �
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The tensor product Fn ⊗Λ − defined via ρ is an additive exact functor on
the category of projective left Λ-modules (resp. perfect complexes of left
Λ-modules), as a consequence, the image of εΛ,ξ(T) under Fn⊗Λ is equal to
the product

Fn⊗Λ (dΛ(ξ : T(−1)→ T)) ·Fn⊗Λ ((εΛ,ξ−1(T∗(1))∗)−1) ·Fn⊗Λ (dΛ(Ψ(Qp,T))),

where

Fn ⊗Λ (dΛ(ξ : T(−1)→ T)) = dF (ξ : WT,ρ(−1)→WT,ρ),

Fn ⊗Λ (dΛ(Ψ(Qp,T))) = dF (Ψ(Qp,WT,ρ))

and since εΛo,ξ−1(T∗(1)) satisfies condition (?)

Fn ⊗Λ ((εΛ,ξ−1(T∗(1))∗)−1) =

((
(Fn)t ⊗Λo (εΛo,ξ−1(T∗(1)))

)∗)−1

= (εF,ξ−1(WT∗(1),ρ∗)
∗)−1,

εF,ξ−1(WT∗(1)) being the ε-isomorphism of the de Rham representation WT∗(1)

described in subsubsection 2.3.1. Next by the property (1) of ε-isomorphisms of
subsubsection 2.3.1 εΛ,ξ(T) satisfies condition (?).

Proof of (2)

We prove the case, where the conjectures Cnaep (L/K, V ′) and Cnaep (L/K, V ′′) hold
(the other cases being analogous to this one). Choosing appropriate GK-stable
Zp-lattices T, T ′, T ′′ in V, V ′, V ′′, respectively, we obtain an exact sequence

0 // T ′ // T // T ′′ // 0,

which give rise to an exact sequence of Λ-modules

0 // T′ // T // T′′ // 0, (3.3)

and an exact triangle of perfect complexes of Λ-modules

RΓ(Qp,T′) // RΓ(Qp,T) // RΓ(Qp,T′′) // RΓ(Qp,T′) [1] ,

such that
dΛ(T) = dΛ(T′) · dΛ(T′′),

dΛ(RΓ(Qp,T)) = dΛ(RΓ(Qp,T′)) · dΛ(RΓ(Qp,T′′)).

We define εΛ,ξ(T) := εΛ,ξ(T′) · εΛ,ξ(T′′), then

εΛ,ξ(T) : dΛ̃(0)
∼=−→ Λ̃⊗Λ {dΛ(RΓ(Qp,T)) · dΛ(T)}

according to the identification above.
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Further, let ρ : Λ → Mn(F ) be a (irreducible) representation. Using condi-
tion (?) for εΛ,ξ(T′) and εΛ,ξ(T′′) we get:

Fn⊗Λ : εΛ,ξ(T′)→ εF,ξ(WT′), Fn⊗Λ : εΛ,ξ(T′′)→ εF,ξ(WT′′),

where εF,ξ(−) are ε-isomorphisms of de Rham representations described in sub-
subsection 2.3.1.

The tensor product Fn ⊗Λ − is an additive exact functor on the category
of projective left Λ-modules (resp. perfect complexes of left Λ-modules), as a
consequence, the image of εΛ,ξ(T) under Fn⊗Λ is equal to the product εF,ξ(WT′)·
εF,ξ(WT′′), which by the property (2) of ε-isomorphisms of subsubsection 2.3.1
is the ε-isomorphism of the de Rham representation WT sitting in the following
exact sequence of F -spaces

0 // WT′ // WT // WT′′ // 0

obtained from (3.3), hence εΛ,ξ(T) satisfies condition (?).

Proof of (3)

Set G1 := Gal(L/M), G2 := Gal(M/K) and Λ1 := Zp [G1], Λ2 := Zp [G2]. We
first give the proof for G2 = Gal(M/K) = G/G1. The projection of the group
rings f : Λ→ Λ2 induces the base change functor Λ2⊗Λ− and homomorphisms
on the K-groups:

f∗ : K0(Λ̃)→ K0(Λ̃2), Y 7→ Λ2 ⊗Λ Y,

f∗ : K1(Λ̃)→ K1(Λ̃2), [Y, α] 7→ [Λ2 ⊗Λ Y, idΛ2 ⊗ α].

Remark 3.18 Since GQp acts Λ- (resp. Λ2-) linear, we have

Λ2 ⊗Λ IndL/QpT
∼= IndM/QpT

and by Theorem 3.1

Λ2 ⊗LΛ RΓ(Qp, IndL/QpT ) ∼= RΓ(Qp, IndM/QpT ).

We define εΛ2,ξ(IndM/QpT ) as the image of εΛ,ξ(T) under Λ2 ⊗Λ −. Then
εΛ2,ξ(IndM/QpT ) is by Proposition 3.3 an isomorphism

dΛ̃2
(0)

∼=−→ Λ̃2 ⊗Λ2

{
dΛ2

(RΓ(Qp, IndM/QpT )) · dΛ2
(IndM/QpT )

}
.

Now let ρ̄ : Λ2 → Mn(F ) be a (irreducible) representation of G2. We also
consider ρ as a representation of G, which is trivial on G1. Together with the
projection Λ→ Λ2 it induces two isomorphic functors

Fn ⊗Λ − ∼= Fn ⊗Λ2
(Λ2 ⊗Λ −).

As a consequence, the images of εΛ,ξ(T) and εΛ2,ξ(IndM/QpT ) under Fn⊗Λ−
and Fn ⊗Λ2

−, respectively, are equal, thus εΛ2,ξ(IndM/QpT ) satisfies condition
(?), as εΛ,ξ(T) does.
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Next we proof the second part of the statement. Λ is a f.g. free Λ1-module
via the inclusion of the group rings f : Λ1 → Λ. There is a forgetful functor from
the category of projective Λ-modules to the category of projective Λ1-modules.
The functor is to regard a Λ-module (resp. a perfect complex of Λ-modules) as
a Λ1-module (resp. a perfect complex of Λ1-modules) and is represented by Λ,
where Λ is considered as a Λ1-Λ bimodule. The induced homomorphism f∗ on
the K-groups is called the transfer map (norm homomorphism).

We define εΛ1,ξ(Λ⊗Λ T) as the image of εΛ,ξ(T) under the forgetful functor,
then by Proposition 3.3 and Theorem 3.1

εΛ1,ξ(Λ⊗Λ T) : dΛ̃1
(0)

∼=−→ Λ̃1 ⊗Λ1
{dΛ1

(RΓ(Qp,Λ⊗Λ T)) · dΛ1
(Λ⊗Λ T)} .

Let ρ1 : Λ1 →Mn(F ) be a (irreducible) representation of G1. We set

ρ := IndM/K(ρ1) : Λ→Mn(F )

and obtain two isomorphic functors defined via ρ1 and ρ, respectively:

Fn ⊗Λ1
(Λ⊗Λ −) ∼= Fn ⊗Λ −

The images of εΛ,ξ(T) and εΛ1,ξ(Λ⊗Λ T) under Fn ⊗Λ − (resp. Fn ⊗Λ1
−)

are the same, hence εΛ2,ξ(IndM/QpT ) satisfies condition (?), for εΛ,ξ(T) satisfies
it.

3.3 Generalization to Iwasawa algebras

Let L/K be a compact p-adic Lie extension of a local filed K with the Galois
group G. We write Λ := Zp[[G]] for the complete group algebra of G with
coefficients in Zp (cf. [NSW, §2]). The ring Λ is a semilocal adic ring, so that
LTNC also applies to Λ and some f.g. projective Λ-module T with a continuous
GQp -action. Next we generalize Cnaep (L/K, V ) (as a special case of LTNC) to
the case of complete group algebras. Let V , T and ξ be as in the previous
subsection. Consider

T := IndL/QpT = lim←−
U

TU ,

where U runs through the open normal subgroups of G and TU := IndLU/QpT
are f.g. projective Zp[G/U ]-modules endowed with a continuous action of GQp ,
then by [NSW, Cor. 5.2.12] T is a f.g. (compact) projective Λ-module with a con-
tinuous GQp -action. Using Theorems 3.1, 3.4 and the fact before Cnaep (L/K, V )
we formulate

Conjecture 3.19 (Cnaep (L/K, V )) Let L/K be a compact p-adic Lie extension
and let V be a de Rham representation of GK , then for any choice of T and ξ,
there exists an isomorphism

εΛ,ξ(T) : dΛ̃(0)→ Λ̃⊗Λ ∆ep(L/K, T )
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(i.e. εΛ,ξ(T) ∈ Isom(dΛ(0),∆ep(L/K, T ))×K1(Λ) K1(Λ̃))
satisfying the following condition:

(??) Let ρ : G→ GLn(F ), n ≥ 1 be an (irreducible) Artin representation of
G. Then the image εF,ξ(WT,ρ) of εΛ,ξ(T) under Fn ⊗Λ − is the ε-isomorphism
of the de Rham representation WT,ρ described in subsubsection 2.3.1.

The proofs of Propositions 3.7 and 3.8 generalize immediately to the case of
complete group algebras, inverse limits being exact on the category of compact
Λ-modules, thus Conjecture 3.19 is independent of the choices of T and ξ.

Remark 3.20 We believe that SK1(Λ̃) = 1, so that

K1(Λ̃) = Det(Λ̃) = lim←−
U

Det(Ẑurp [G/U ])

by Theorem 6.29. If this is true, then εΛ,ξ(T) = lim←−
U

εZp[G/U ],ξ(TU ) (projections

are compatible by Proposition 3.14(3)) is unique and belongs to

Isom(dΛ(0),∆ep(L/K, T ))×K1(Λ) K1(Λ̃)[T,τp]−1 .

The reason for that is the vanishing of SK1(Ẑurp [G]) for every finite group G
(see Corollary 6.51). In particular, for abelian extensions L/K it is always true,
as Λ̃ is a commutative semilocal ring in this case.

Remark 3.21 Let H be an open normal subgroup of G and set Λ′ := Zp[G/H].
It follows from condition (??) of Conjecture 3.19 that the image of εΛ,ξ(T) under
Λ′⊗Λ is εΛ′,ξ(IndLH/QpT ) – the ε-isomorphism of Cnaep (L/K, V ). In particular,
if L/K is finite, then Conjectures 3.19 and Cnaep (L/K, V ) coincide.

Proposition 3.22 There are the following functorial properties of Conjecture
3.19

1. Conjectures Cnaep (L/K, V ) and Cnaep (L/K, V ∗(1), ξ) are equivalent.

2. Let 0 → V ′ → V → V ′′ → 0 be an exact sequence of p-adic de Rham
representations of GK . If Cnaep (L/K, ξ) holds for two of the representations
V, V ′, V ′′, then it also holds for the third one.

3. Let H be an open normal subgroup of G. If Cnaep (L/K, V ) holds, then the

conjectures Cnaep (L/LH, V ) and Cnaep (LH/K, V ) hold, too.

4. Let ρ : Λ → Mn(OF ) be an (irreducible) Artin representation of G over
F . If Cnaep (L/K, V ) holds, then Cep,K(V, F ) holds for V = ρ∗ ⊗Qp V .

Proof. The proof is similar to the proof of Proposition 3.14. It only uses the
fact that inverse limits are exact on the category of compact Λ-modules. �

Remark 3.23 Conjecture 3.19 is proved in [BB, Thm. 4.4.4] for K being a
finite unramified extension of Qp, L = ∪∞n=1K(ζpn) – the cyclotomic extension
of K – and V being a crystalline representation of GK .
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4 The conjecture 3.6. Ideas of the proof

4.1 Reduction step

Let Qp ⊆ K ⊆ L be a tower of finite Galois field extensions. Let L/K be a
Galois field extension with the Galois group G, such that (|G|, p) = 1. Let V
be a p-adic de Rham representation of GK . Then we have the following

Proposition 4.1 The conjecture Cnaep (L/K, V ) holds if and only if Cep,K(W,F )
hold for all de Rham representations WT,ρ over Fρ, where ρ : G → GLnρ(Fρ)
runs through the set of all (irreducible) representations of G.

Proof. The “only” part is given by Proposition 3.14 (4).
For the other direction we choose an element

λ ∈
{
x ∈ K1(Λ̃) = Det(Λ̃) | ϕp(x) = [T, τp] · x

}
and multiply each εOFρ ,ξ(IndK/Qp(ρ∗ ⊗Zp T )) by λρ := F

nρ
ρ ⊗Λ λ, respectively.

Then ϕp acts trivially on each λρ · εOFρ ,ξ(IndK/Qp(ρ∗⊗Zp T )), so that it belongs
to

Isom(dOFρ (0), ∆̃ep,Qp(OFρ , IndK/Qp(ρ∗ ⊗Zp T )))×O
×
Fρ O×Fρ .

The order n of the group G is a unit in Zp, thus Λ is the maximal order in
Ω and we have the Wedderburn decompositions:

Ω =
∏
ρ∈E

Aρ, Cent(Aρ) = Fρ and Λ =
∏
ρ∈E
Aρ,

where E denotes the set of representatives of the Qp-equivalence classes of the
irreducible representations (or corresponding characters χρ) of G. These de-
compositions induce the following commutative diagram

Det(K1(Λ)) //

f1����

K1(Ω)

∼= f2

��∏
ρ∈E
O×Fρ //

∏
ρ∈E

F×ρ ,

(4.1)

where the map f1 is given as
∏
ρ∈E
OnρFρ ⊗Λ −.

Next we find an element ε′ of

Isom(dΛ(0),∆ep(L/K, T ))×K1(Λ) Det(K1(Λ)),

such that its image under OnρFρ⊗Λ− is λρ ·εOFρ ,ξ(IndK/Qp(ρ∗⊗ZpT )) for each ρ ∈
E. Such an element always exists, because the set Isom(dΛ(0),∆ep(L/K, T )) is
not empty (see Theorem 3.4) and the map f1 realizing OnρFρ ⊗Λ− on K1-groups

is surjective by [Fr, Lem. 1.5].
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Now we define the ε-isomorphism εΛ,ξ(T) of the conjecture Cnaep (L/K, V ) to
be ε′ · λ−1, where we abuse the notation and write ε′ also for the image of ε′ in
the set

Isom(dΛ(0),∆ep(L/K, T ))×K1(Λ) K1(Λ̃)

via the inclusion Det(K1(Λ)) ↪→ K1(Λ̃).
We only have to check the condition (?). But from the definition of εΛ,ξ(T)

we see that for each ρ ∈ E the image of εΛ,ξ(T) under F
nρ
ρ ⊗Λ− is precisely the

ε-isomorphism εFρ,ξ(WT,ρ) induced by εOFρ ,ξ(IndK/Qp(ρ∗ ⊗Zp T )). Moreover,
for ρ and ρ′ lying in the same Qp-equivalence class the images of εΛ,ξ(T) under

F
nρ
ρ ⊗Λ − and F

nρ′

ρ′ ⊗Λ − defined via ρ and ρ′, respectively, are the same. �

Remark 4.2 Let WT,ρ be a representation of GQp over Fρ. We also can view
WT,ρ as a representation over Qp. Then the ε-isomorphism εZp,ξ(IndK/Qp(ρ∗⊗Zp
T )) (the inverse of δV,K/K in Cep,K(V )) is the image under the transfer map
(norm map) NFρ/Qp of εOFρ ,ξ(IndK/Qp(ρ∗ ⊗Zp T )) in Cep,K(V, F ). Further,
the norm of an element x ∈ Fρ belongs to Zp if and only if x ∈ OFρ , thus
εZp,ξ(IndK/Qp(ρ∗ ⊗Zp T )) exists if and only if εOFρ ,ξ(IndK/Qp(ρ∗ ⊗Zp T )) exists,
i.e. Cep,K(V ) and Cep,K(V, F ) are equivalent.

Remark 4.3 Let Qp ⊆ K ⊆ L be a tower of finite Galois field extensions, such
that the Galois group G of L/K is a product H×H ′ with (|H ′|, p) = 1. Let V be
a p-adic de Rham representation of GK . Then using the same arguments as in
Proposition 4.1 and Remark 4.2 one can show that the conjecture Cnaep (L/K, V )

holds if and only if Cnaep (LH
′
/K,W ) hold for all de Rham representations WT,ρ

over Fρ, where ρ : H ′ → GLnρ(Fρ) runs through the set of all (irreducible)
representations of H ′.

4.2 Applications

We keep the notation of the previous subsection. Let Qp ⊆ K ⊆ L ⊆ Qabp .
By local theorem of Kronecker-Weber every irreducible representation ρ of G
over Fρ is a tensor product of an unramified character χur and a character χcyc

of the the cyclotomic extension K∞ = ∪∞n=1K(ζpn). In this case we have the
following examples

Let V be a crystalline representation of GK .

Example 4.4 Let L/K be an unramified extension of degree prime to p. Every
twist V (χ) of V by an (irreducible) unramified character χ of G = Gal(L/K)
is again a crystalline representation, such that by Theorem 2.8 (2) the conjec-
tures Cep(K,V (χ)) hold for all χ and thus by Proposition 4.1 the conjecture
Cep(L/K, V ) holds.

Now let K be an unramified extension of Qp.

Example 4.5 Let L/K ⊂ Qabp be a tamely ramified extension with (|G|, p) = 1.
Every twist V (χ) of V by a character χ of G = Gal(L/K) is a crystalline rep-
resentation V (χur) twisted by a character χcyc of the cyclotomic extension. By
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Theorem 2.8 (3) the conjectures Cep(K,V (χ)) hold for all χ, thus the conjecture
Cep(L/K, V ) is true.

Remark 4.6 Since the conjecture Cep(L/K, V ) is stable under exact sequences
of p-adic representations, we deduce it also for those semi-stable representations
of GK , whose irreducible subquotients are crystalline representations and for
L/K ⊂ Qabp being as in the two examples above.

Let V be an ordinary p-adic representation of GK and K be still unramified
over Qp.

Example 4.7 Let L/K be an unramified extension of degree prime to p. Every
twist V (χ) of V by an (irreducible) unramified character χ of G = Gal(L/K) is
an ordinary representation. By Theorem 2.3 the conjectures Cep,K(V (χ)) hold
for all χ, hence the conjecture Cnaep (L/K, V ) = Cep(L/K, V ) holds.

5 One-dimensional Lubin-Tate groups

We keep the following notation till the end of this section. Let p be a prime
number. Let K be a finite extension of Qp and χur : GK → Z×p be a continuous
unramified character. We consider a continuous representation T = Zp(χur)(1)
of GK and set V := Qp ⊗Zp T . Let L be a finite tamely ramified extension
of K and let G = Gal(L/K). We aim to compute the terms appearing in
Cnaep (L/K, V ) and prove the conjecture for L/K being an unramified extension
of degree prime to p. For this we extend the ideas of [Breu] from the case of the
multiplicative group Gm to arbitrary one-dimensional Lubin-Tate groups. We
omit the case, in which χur factors over L, as been proved by (loc. cit.) and
assume from now on that χur(GL) 6= 1.

Warning: in contrast to the previous subsection in this section we introduce
arbitrary tamely ramified extensions (not only with (|G|, p) = 1).

5.1 One-dimensional Lubin-Tate groups and Galois repre-
sentations

In this subsection we collect some useful facts about one-dimensional Lubin-Tate
groups. The main references for this subsection are [N] and [St].

Definition 5.1 A one-dimensional commutative formal group over a ring R is
a formal power series F(X,Y ) ∈ R[[X,Y ]] with the following properties:

1. F(X,Y ) ≡ X + Y mod deg 2,

2. F(X,Y ) = F(Y,X),

3. F(X,F(Y,Z)) = F(F(X,Y ), Z).
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By evaluating in a domain p, where the power series converge, we get an
ordinary group from a formal group. For example let R be a complete valuation
ring and p its maximal ideal, then the operation

x+F y := F(x, y), x, y ∈ p

defines a new abelian group structure on p.

Example 5.2 Ĝa = X + Y the formal additive group.

Example 5.3 Ĝm = X + Y +XY the formal multiplicative group. Indeed,

X + Y +XY = (1 +X) · (1 + Y )− 1,

such that the new operation +Ĝm is obtained from multiplication · via the trans-
lation x 7→ x+ 1.

Definition 5.4 A homomorphism f : F → G between two formal groups is a
power series f(X) =

∑∞
i=1 aiX

i ∈ R[[X]], such that

f(F(X,Y )) = G(f(X), f(Y )).

A homomorphism is an isomorphism, if a1 is a unit, i.e. there is a power series

f−1(X) = a−1
1 X + . . . ∈ R[[X]], f−1 : G → F ,

such that f(f−1(X)) = f−1(f(X)) = X.

If the coefficients of a homomorphism f : F → G belongs to an extension ring
R′, then we call this homomorphism defined over R′.

The homomorphisms f : F → F of a formal group F over R form a ring
EndR(F) with the operations

(f +F g)(X) = F(f(X), g(X)), (f ◦ g)(X) = f(g(X)).

Definition 5.5 A formal R-module is a formal group F over R together with
a ring homomorphism

R→ EndR(F), a 7−→ [a]F (X),

such that [a]F (X) ≡ aX mod deg 2.
A homomorphism (over R′ ⊇ R) between formal R-modules F , G is a ho-

momorphism f : F → G of formal groups (over R′) with the property

f([a]F (X)) = [a]G(f(X)) for all a ∈ R.

Now let R = OK be the valuation ring of a local field K with the residue
class field Fq = OK/pK of cardinality q.
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Definition 5.6 A (one-dimensional commutative) Lubin-Tate group over OK
for the prime element π is a formal OK-module F such that

[π]F (X) ≡ Xq mod π.

The simplest candidate for [π]F (X) is [π]F (X) = πX + Xq. The next
theorem shows

Theorem 5.7 There is a unique (one-dimensional commutative) Lubin-Tate
group Fπ over OK for the prime element π such that [π]Fπ (X) = πX + Xq ∈
EndOK (Fπ).

Proof. See [St, Thm. 74]. �

Proposition 5.8 The Lubin-Tate formal groups F , F ′ for the primes π, π′,
respectively, are isomorphic over OK if and only if π = π′. There is an isomor-
phism defined over O

K̂ur

Fπ → Fπ′ , X 7−→ uX + . . . ,

where π′ = uπ and u ∈ O×K .

Proof. See [St, Prop. 77] and [N, Thm. 4.6]. �

From the last proposition we see that it is enough to consider the unique
Lubin-Tate group Fπ for each prime π.

Proposition 5.9 The Lubin-Tate formal group Fπ over OK is a p-divisible
commutative formal Lie group of height [K : Qp]. In particular, we have a
notion of a tangent space.

Proof. See [St, Prop. 75]. �

Proposition 5.10 There is an isomorphism logFπ : Fπ → Ĝa of formal OK-
modules defined over K.

Proof. See [St, Prop. 76]. �

Let p̄ denote the maximal ideal of the valuation ring of Qp. We evaluate Fπ
in p̄ to get an abelian group Fπ(p̄). As next we study the structure of this
group.

Proposition 5.11 Fπ(p̄) is p-divisible.

Proof. The statement follows from 5.9 and [St, Cor. 84 and Thm. 70]. �

The group Fπ is a formal OK-module, thus for any algebraic extension L of
K the group Fπ(pL) admits an OK-module structure.

Proposition 5.12 Let K = Qp and L be a finite extension of K. Then Fπ(pL)
is a Zp-module of rank [L : Qp].
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Proof. The statement follows from 5.9 and [St, Cor. 87(2)]. �

The endomorphism [π] : Fπ → Fπ is a finite flat map of order q, hence the
kernel Fπ[π] of [π] is a finite flat group over OK of order q. The π-adic Tate-
module of Fπ is

TπFπ = lim←−
n

Fπ[πn](p̄)

with transfer maps given by [π]. The group Tπ = TπFπ has an OK-module
structure by functoriality and carries an OK-linear GK-action.

Lemma 5.13 Tπ is a free OK-module of rank 1.

Proof. See the proof before [St, Lem. 78]. �

From the lemma above we deduce that the Galois action on Tπ is given by a
character

χπ : GK → GL1(Tπ) = O×K .

Lemma 5.14 The character χπ is surjective.

Proof. See [St, Lem. 78]. �

Lemma 5.15 For π′ = uπ the characters χπ′ and χπ differ by an unramified
character χπ′/χπ sending the Frobenius of O

K̂ur to u.

Proof. See [St, Prop. 80]. �

Remark 5.16 For a different prime π′ the π′-adic Tate-module

Tπ′Fπ = lim←−
n

Fπ[π′n](p̄)

is isomorphic to Tπ as an OK [GK ]-module. Indeed, in K we can factor π′ = uπ
with a unit u. The map [u] is an automorphism of Fπ and commutes with the
action of GK .

Later we will need a description of points of a formal group given by the
lemma on p. 237 of [LR]. For the convenience of the reader we recall the
statement and the proof of this lemma here.

Definition 5.17 A (d-dimensional) formal group F over OK is called toroidal

if F is isomorphic to Ĝdm over O
K̂ur .

If f : F → Ĝdm is an isomorphism over O
K̂ur , there is another, fσ, obtained

by applying σ – the Frobenius of O
K̂ur – to the coefficients of the power series

describing f. Then fσ ◦ f−1 is an automorphism of Ĝdm and thus corresponds in
a natural way to a non-singular d× d matrix w over Zp (since EndO

K̂ur
(Ĝm) ∼=
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EndZp(Ĝm) ∼= Zp). This matrix is called a twist matrix of F . Any two such
will be similar.

Now suppose that L/K is a totally ramified Galois extension and that F is

toroidal. Extend σ to LK̂ur by defining it to be the identity on L. Finally, let
w be a twist matrix of F . We set

V (L) = Vw(L) :=
{
β ∈ U1(LK̂ur)d | βσ = αw

}
,

where U1(LK̂ur) denote the principal units of O
LK̂ur , σ acts diagonally on β

and u acts in the obvious way. The elements of G(L/K) commute with the
action of σ and thus V (L) is a G(L/K)-module.

Lemma 5.18 F(pL) ∼= V (L) as G(L/K)-modules.

Proof. Let f : F → Ĝdm be an isomorphism over O
K̂ur such that fσ ◦ f−1 =

w. Then f induces a group isomorphism from F(p
LK̂ur ) to Ĝdm(p

LK̂ur ) =

U1(LK̂ur)d. Let β ∈ F(p
LK̂ur ). Then β ∈ F(pL) if and only if βσ = β. Now if

βσ = β then
f(β)σ = fσ(βσ) = fσ(β) = f(β)w.

Thus β ∈ F(pL) implies f(β) ∈ V (L). Similarly if β ∈ V (L) then β ∈ F(pL). �

From now on we set K = Qp.

Example 5.19 The formal multiplicative group Ĝm is a Lubin-Tate group over
Zp for the prime element p with respect to the mapping

Zp → EndZp(Ĝm), a 7−→ [a]Ĝm(X) = (1 +X)a − 1 =

∞∑
i=1

(ai )Xi.

In particular, [pn]Ĝm(X) = (1+X)p
n−1, so that Ĝm[pn] consists of the elements

ζ−1, where ζ varies over the pn-th roots of unity. Thus the p-adic Tate module
TpĜm is isomorphic to Zp(1) (the isomorphism depending on a choice of ξ).

By Proposition 5.8 Ĝm is isomorphic to Fp over Zp, whence TpĜm ∼= TpFp as
Zp[GQp ]-modules.

Example 5.20 We consider Fπ for π = up with u 6= 1 ∈ Z×p . From the
previous example, Lemma 5.15 and Remark 5.16 we deduce TpFπ ∼= Zp(1)(χ),
where χ : GQp → Z×p is an unramified character sending the Frobenius of Qurp
to u.

Further, the group Fπ is toroidal of dimension 1. Next we compute the twist

matrix w ∈ Z×p of Fπ. The isomorphism f : Fπ → Ĝm defined over Ẑurp is the
inverse of the unique isomorphism

g : Ĝm⊗̂Qurp
logĜm // Ĝa

log−1
Fπ // Fπ⊗̂Qurp
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also defined over Ẑurp (see step 3 in the proof of Proposition 77 in [St]). From
the construction of g it follows, that

gσ = g ◦ [u]Ĝm ,

whence

w = fσ ◦ f−1 = (g−1)σ ◦ g = [u−1]Ĝm ◦ g
−1 ◦ g = [u−1]Ĝm .

From Lemma 5.18 we have for a totally ramified Galois extension L/Qp

Fπ(pL) ∼=
{
β ∈ U1(LQ̂urp ) | βσ = [u−1]Ĝm(β)

}
as G(L/Qp)-modules. Furthermore, since G(Lur/L) ∼= G(Qurp /Qp) is topologi-
cally generated by σ and χ(σ) = u, there is an isomorphism of G(L/Qp)-modules

Fπ(pL) ∼= U1(L̂ur)(χ)G(Lur/L),

where the Zp-module structure of U1(L̂ur) is given by the mapping in the previ-
ous example. Similar results can be obtained also for the base change of Fπ to
a finite extension K/Qp.

5.2 Galois cohomology

First we compute the Galois cohomology groups Hi(L, T ) as Λ-modules. We
point out, that by this we also determine the Galois cohomology groups of
T ∗(1) in view of the local duality theorems in the Galois cohomology theory.

Proposition 5.21 With the notation as above we have:

• Hi(L, T ) = 0 for i 6= 1.

• H1(L, T ) ∼=
(
̂(Lur)×

p
(χur)

)G(Lur/L)

, where −̂p denotes the p-completion

of a group.

• There is an isomorphism of Λ-modules

F(pL)
∼=−→ H1(L, T ).

Proof. Hi(L, T ) = 0 for i 6= 0, 1, 2 because the cohomological dimension of GK
is 2. Further, H0(L, T ) = TGL = 0, as the character χur ⊗ χcyc : GL → Z×p is
not trivial. Using the local duality theorem we get H2(L, T ) = H0(L, T ∗(1))∗.
The last group is zero because (χur)−1(GL) 6= 1.

To compute the group H1(L, T ) we use the Hochschild-Serre spectral se-
quence for the closed subgroup GLur of GL, which exists first only for finite
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discrete modules T/pn, but with [NSW, Thm. 2.7.5] also for the compact mod-
ule T . Note that the character χur factors over Lur, such that GLur acts via
the cyclotomic character on T . The five-term exact sequence takes the form

0 → H1(Gal(Lur/L), TGLur ) → H1(L, T ) →

H1(GLur , T )G(Lur/L) → H2(Gal(Lur/L), TGLur ) → H2(L, T ).

The module of invariants TGLur is a zero-module, since the cyclotomic character
is not trivial, thus the first and the fourth terms in the exact sequence above
vanish and we get a canonical isomorphism

H1(L, T ) ∼= H1(GLur , T )G(Lur/L) = H1(GLur ,Zp(χur)(1))G(Lur/L).

From the Kummer theory and the isomorphism

H1(GLur ,Zp(χur)(1))G(Lur/L) =
(

H1(GLur ,Zp(1))(χur)
)G(Lur/L)

we obtain H1(L, T ) ∼=
(
̂(Lur)×

p
(χur)

)G(Lur/L)

.

By taking GL-invariants of the exact sequence

0 // F [pn](p̄) // F(p̄)
[pn] // F(p̄) // 0 (5.1)

we get the following exact sequence of Λ-modules

0 // F(pL)/[pn](F(pL))
// H1(L,F [pn](p̄)) // H1(L,F(p̄))[pn] // 0

for each n ≥ 1.
The inverse limit over n of the exact sequences above results in the exact

sequence of Λ-modules

0 // F(pL) // H1(L, T ) // H1(L, T )/F(pL) // 0

F(pL) being a f.g. Zp-module (cf. [Breu, 4.5.1]). From Example 5.20 we deduce
that the quotient H1(L, T )/F(pL) is isomorphic to

( ̂(Lur)×
p

U1(L̂ur)
(χur)

)G(Lur/L)

. (5.2)

For the extension Lur/Qp we have (both algebraically and topologically)

(Lur)× = (πL)×O×Lur ∼= Z⊕O×Lur ,

where πL is a prime element of OL. Let κL denote the residue class field of L,
then we have a split exact sequence

1 // U1(Lur) // O×Lur // κL× // 1.
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The group κL
× is p-divisible, thus

κ̂L
×
p

:= lim←−
n

κL
×/(κL

×)p
n

= 1

and
̂(Lur)×

p
= (̂πL)

p
× ̂U1(Lur)

p
= (̂πL)

p
× U1(L̂ur),

whence the quotient in (5.2) is isomorphic to(
(̂πL)

p
(χur)

)G(Lur/L)

.

The last is trivial, since the group G(Lur/L) acts trivially on (πL) and χur is a
non-trivial character . �

Next we compute the finite part H1
f (L, T ) ⊆ H1(L, T ) defined as a preimage

of H1
f (L, V ) under the map i : H1(L, T )→ H1(L, V ).

Lemma 5.22 dimQp H1
f (L, V ) = dimQp H1(L, V ) = [L : Qp].

Proof. Both, V and V ∗(1), are de Rham representations of GL, thus from [BK,
pp. 355-356] we have

dimQp H1
f (L, V ) + dimQp H1

f (L, V ∗(1)) = dimQp H1(L, V ); (5.3)

dimQp H1
f (L, V ) = dimQp(tV (L)) + dimQp H0(L, V ), (5.4)

where tV (L) := DL
dR(V )/F il0DL

dR(V ). The same is true for V ∗(1).
But H0(L, V ) and H0(L, V ∗(1)) are zeros by the proof of Proposition 5.21,

so that
dimQp H1

f (L, V ) = dimQp(tV (L))

and
dimQp H1

f (L, V ∗(1)) = dimQp(tV ∗(1)(L)).

For a de Rham representation W by [FO, p. 148]

tW (L) = gr−1(W ) ↪→ (Cp(−1)⊗Qp W )GL ,

thus by Corollary 3.57 in (loc. cit.)

(Cp(−1)⊗Qp V )GL = (Cp(χur))GL ∼= L

and
(Cp(−1)⊗Qp V

∗(1))GL = (Cp(χur)−1(−1))GL = 0.

From the equality (5.3) we get

dimQp H1
f (L, V ) = dimQp H1(L, V ).
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Finally, using the formula for the Euler characteristic

∞∑
i=0

(−1)i dimQp Hi(L, V ) = −[L : Qp] · dimQp V

we see that dimQp H1(L, V ) = [L : Qp], as Hi(L, V ) = 0 for i 6= 1 (cf. Proposition
5.21). �

Corollary 5.23 From the above proposition it follows that

• H1
f (L, T ) = H1(L, T ) is a Zp-module of rank [L : Qp],

• H1
f (L, T ∗(1)) = H1(L, T ∗(1))tors ∼= H0(L, V ∗(1)/T ∗(1)) is a finite torsion

group.

Proof. The first part is obvious. By the definition of H1
f (L, T ∗(1)) it contains

the torsion subgroup of H1(L, T ∗(1)) and, since the image of H1
f (L, T ∗(1)) in

H1(L, V ∗(1)) is zero, they are equal. Consider an exact sequence of GL-modules

0 // T ∗(1) // V ∗(1) // V ∗(1)/T ∗(1) // 0.

The associated long exact sequence in cohomology is

0 // H0(L, T ∗(1)) // H0(L, V ∗(1)) // H0(L, V ∗(1)/T ∗(1)) //

// H1(L, T ∗(1)) // H1(L, V ∗(1)) // H1(L, V ∗(1)/T ∗(1)) // . . .

The groups H0(L, T ∗(1)) and H0(L, V ∗(1)) are zeros. Further, the group
H0(L, V ∗(1)/T ∗(1)) is a finite torsion group, since (χur)−1 ≡ id (mod pk) for
some k >> 1, so that we can replace H1(L, T ∗(1)) by H1

f (L, T ∗(1)) in the exact
sequence above getting

0 // H0(L, V ∗(1)/T ∗(1))
∼= // H1

f (L, T ∗(1)) // 0.

�

5.3 Comparison isomorphism

The p-adic comparison isomorphism for a de Rham representation V

compV,L/Qp : BdR ⊗Qp DdR(IndL/QpV )
∼=→ BdR ⊗Qp IndL/QpV,

c⊗ x 7→ cx

is a BdR-linear map, which commutes with the action of GQp , where GQp acts
on BdR⊗Qp DdR(IndL/QpV ) via g(c⊗ x) = g(c)⊗ x and diagonally on BdR⊗Qp
IndL/QpV .
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We fix an element tur ∈ (Ẑurp
×

(χurQp))Gal(Qp/Qp). Note that two such elements

differ by an element of Z×p . Then OL and (O
L̂ur

(χur))G(Lur/L) are isomorphic

as Λ-modules by just sending l ∈ OL to tur · l ∈ (O
L̂ur

(χur))G(Lur/L). Thus

every element l̃ ∈ (O
L̂ur

(χur))G(Lur/L) can be written as

l̃ = tur · l = tur ·
∑
g∈G

agg(b), ag ∈ OK .

Obviously, the same is true for L and (L̂ur(χur))G(Lur/L).
Let t := log[ξ] ∈ BdR denote the p-adic period analogous to 2πi, then

g(t) = χcyc(g) · t for all g ∈ GQp . Denote by v a basis of Zp(χurQp), where χurQp
is a character of GQp appearing as a twist TpFπ(−1) of a p-adic Tate module
TpFπ for an appropriate π ∈ Zp, such that χur is the restriction of χurQp to GK .

Then the element v ⊗ ξ substitutes a basis of T . Moreover, DdR(IndL/QpV ) ∼=
DL
dR(V ) (resp. DdR(IndL/QpV (−1)) ∼= DL

dR(V (−1)) is a one-dimensional L-
vector space with the basis eχurQp ,1 := tur · t−1⊗ (v⊗ ξ) (resp. eχurQp ,0 := tur ⊗ v).

In particular, they are isomorphic as Ω-modules and we have a commutative
diagram of BdR[G]-modules (with an action of GQp)

BdR ⊗Qp DL
dR(V )

compV

∼=
//

��

BdR ⊗Qp IndL/QpV

t·⊗f
��

BdR ⊗Qp DL
dR(V (−1))

compV (−1)

∼=
// BdR ⊗Qp IndL/QpV (−1),

(5.5)

where the map t· is the multiplication with t and f(v ⊗ ξ) = v.

Warning: the left vertical arrow in the above diagram is an isomorphism of
Ω-modules induced by eχurQp ,1 7→ eχurQp ,0, whereas the right vertical arrow is an

isomorphism of BdR[G]-modules with an action of GQp and is responsible for
the following normalization on K1-groups.

We apply (not necessary commutative) determinant functor (see Appendix
B) to compV,L/Qp to obtain the map

α̃V,L/K ∈ Isom(dΩ(DdR(IndL/QpV )),dΩ(IndL/QpV )×K1(Ω) K1(BdR[G])

Multiplying α̃V,L/K with t−1 we get

αV,L/K = (x, y) ∈ Isom(dΩ(DdR(IndL/QpV )),dΩ(IndL/QpV )×K1(Ω) K1(L̂ur[G])

with
g(y) = [IndL/QpV, g] · y, ∀g ∈ G(Lur/Qp)

(cf. Remark 2.17).
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The maximal abelian extension Qabp of Qp is the composite of the maximal
unramified extension Qurp and the cyclotomic extension Qp,∞, which is obtained

by adjoining all p-power roots of 1. For g ∈ GQp we define gur ∈ Gal(Qabp /Qp)
by gur|Qurp = g|Qurp and gur|Qramp

= id. We also define gram ∈ Gal(Qabp /Qp) by
gram|Qurp = id and gram|Qramp

= g|Qramp
. Thus g|Qabp = gurgram.

We set

βV,L/K := εD(L/K, V )−1 · αV,L/K = (x, εD(L/K, V )−1 · t−1 · y),

where

εD(L/K, V ) :=
(
ε(Dpst(IndK/Qp(V ⊗ ρ∗χ)), ψQp , dx)

)
χ∈Irr(G)

∈ K1(Qp[G]).

The right hand side is defined similar to [BB, pp. 21-22] or [FK, 3.3.3] via the
theory of local ε-constants à la Deligne. According to [BB, Lem. 2.4.3] βV,L/K
is an element of

Isom(dΩ(DdR(IndL/QpV )),dΩ(IndL/QpV )×K1(Ω) K1(Ω̃)[IndL/QpV,τp]
.

From the twisting property of the local ε-constants (see [Ta1, (3.4.5)]) we
get the equality

εD(L/K, V ) = α · εD(L/K, V (−1)), α = (αχ) ∈ K1(Qp[G]) with

αχ =
∥∥f(IndK/Qp(V (−1)⊗ ρ∗χ))

∥∥ · pn(ψQp )·dimQp IndK/Qp (V (−1)⊗ρ∗χ),

(5.6)

where f(−) is the local Artin conductor, ‖−‖ denotes the absolute norm and
n(ψQp) is defined to be the largest integer n such that ψQp(p−nZp) = 1. Using
the induction property of local Artin conductors (see [Breu, Lem. 3.3]) and the
assumption that the kernel of ψQp is equal to Zp the last equality becomes

αχ = NK/Qp(f(ρ∗χ)) · dχ(1)
K/Qp (5.7)

dK/Qp being the discriminant of K/Qp.

Remark 5.24 Let ι : Q → Qp be any embedding. We also write ι for the
induced map K1(Q[G]) → K1(Qp[G]). Similar to [Breu, 3.4.4] we define an
equivariant ε-constant à la Langland

εL(L/K, V ) :=

(
τQp(IndK/Qp(V ⊗ χ−1))

)
χ∈Irr(G)

∈ K1(Q[G]),

where τQp is the local Galois Gauss sum. The image ι(εL(L/K, V )) ∈ K1(Qp[G])
depends on ι, but by [Breu, Thm. 3.8] two such images (for ι and ι′) differ by
an element of K1(Λ), thus ∂(ι(εL(L/K, V ))) is independent of ι.

From the relation between Deligne’s and Langlands’ local ε-constants (see
(3.6.1) and (3.4.5) of [Ta1]) we deduce the equality up to an element of K1(Λ)

εD(L/K, V (−1)) = ϑ · ι(εL(L/K, V (−1))) in K1(Qp[G]),
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where
ϑχ = pn(ψQp )· 12 ·dim(IndK/Qpρ

∗
χ).

The last are equal to 1 for all χ ∈ Irr(G), as n(ψQp) = 0. It follows, that

∂(εD(L/K, V (−1))) = ∂(ι(εL(L/K, V (−1)))). (5.8)

Finally, we remark that by [Ta2, Cor. 5]

ι(τQp(IndK/Qp(χur ⊗ χ))) = χurQp
(
NK/Qp(f(χ)) · dχ(1)

K/Qp

)
· ι(τQp(IndK/Qpχ)),

where the character χurQp is viewed as a character Q×p → GabQp

χurQp→ Q×p via the
local reciprocity law.

Remark 5.25 An easy calculation shows that in our case the factor ΓL(V ) of
[FK, 3.3.4]: or Γ∗(V ) of [BB, 2.4] used for the correction of the comparison
isomorphism is equal to 1.

5.4 Bloch-Kato exponential map

In this subsection we follow closely the approach of [BB] to construct an iso-
morphism

ε̃Ω,ξ(IndL/QpV ) : dΩ̃(0)→ Ω̃⊗Ω

{
dΩ(RΓ(L, V )) · dΩ(IndL/QpV )

}
.

The constructed isomorphism will satisfy the condition (?), such that to prove
Cnaep (L/K, V ) it will be enough to find an isomorphism

εΛ,ξ(T) : dΛ̃(0)→ Λ̃⊗Λ ∆ep(L/K, T )

with ε̃Ω,ξ(IndL/QpV ) = Qp ⊗Zp εΛ,ξ(T).
Consider the exact sequence of Qp[G]-modules (see [BB, 2.5.1]):

0 // H0(L, V ) // DL
cris(V ) // DL

cris(V )⊕ tV (L)
expV // H1(L, V ) //

exp∗V ∗(1)// DL
cris(V

∗(1))∗ ⊕ t∗V ∗(1)(L) // DL
cris(V

∗(1))∗ // H2(L, V ) // 0,

(5.9)
where expW : tW (L) → H1

f (L,W ) is the Bloch-Kato exponential map for W .

By the proof of Lemma 5.22 we know that H0(L, V ), H2(L, V ), H1
f (L, V ∗(1)),

tV ∗(1)(L) are zeros, whence the exact sequence above degenerates to

0 // DL
cris(V

∗(1))∗
1−φ∗ // DL

cris(V
∗(1))∗ // 0

and

0 // DL
cris(V ) // DL

cris(V )⊕ tV (L)
expV // H1(L, V ) // 0,
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where φ ∈ End(DL
cris(−)) is induced by an endomorphism of the ring Bcris.

Further, using the exact sequence

0 // t∗V ∗(1)(L) // DL
dR(V ) // tV (L) // 0

(t∗V ∗(1)(L) ∼= Fil0DL
dR(V )) and the isomorphism (of [BB, Lem. 1.4.1])

DL
cris(V )

(1− φ)DL
cris(V )

∼=
H1
f (L, V )

H1
e(L, V )

= 0

we deduce that

DL
dR(V )

exp−→ H1(L, V ) and DL
cris(V )

1−φ−→ DL
cris(V )

are isomorphisms. The application of the determinant functor to (5.9) results
in the isomorphism dΩ(1− φ) · dΩ(exp−1) · dΩ((1− φ∗)−1) sending

dΩ(DL
cris(V )) · dΩ(RΓ(L, V ))−1 · dΩ(DL

cris(V
∗(1))∗)

to
dΩ(DL

cris(V )) · dΩ(DL
dR(V )) · dΩ(DL

cris(V
∗(1))∗),

which after the composition with

iddΩ(DLcris(V )) · βV,L/K · iddΩ(DLcris(V
∗(1))∗)

and multiplication with

iddΩ(DLcris(V ))−1 · iddΩ̃(RΓ(L,V )) · iddΩ̃(DLcris(V
∗(1))∗)−1

gives the desired isomorphism ε̃Ω,ξ(IndL/QpV ). Note that ε̃Ω,ξ(IndL/QpV ) satis-
fies the condition (?) automatically by construction (cf. the construction of the
ε-isomorphisms of de Rham representations in subsubsection 2.3.1 and Remark
5.25).

Let G be a commutative formal Lie group of finite height over OK and W
be a p-adic de Rham representation coming from the p-adic Tate module of G.
In [BK, pp. 359-360] is described a commutative diagram, which connects the
Bloch-Kato exponential map with the classical exponential map of G:

tan(GK)(L)
exp //

=

��

G(pL)⊗Qp

��
tW (L)

expW // H1(L,W ),

where tW (L) is identified with the tangent space of GK , the upper (resp. lower)
exp is the exponential map in the classical sense (resp. Bloch-Kato), and the
right vertical map is the boundary map of the Kummer sequence (5.1).
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By Proposition 5.21(3) and Lemma 5.22 the representation T being the
p-adic Tate module of the formal group F (see Example 5.20) fits into the
commutative diagram

0 // F(pL) //

��

H1(L, T ) //

i

��

0

0 // tV (L)
exp // H1(L, V ) // 0,

(5.10)

where the left vertical arrow is a Λ-homomorphism induced by the classical
logarithm logF of F .

5.5 Reformulation of the ε-conjecture

In this subsection we follow closely the approach of [Breu] to reformulate conjec-
ture Cnaep (L/K, V ) in the language of relative K0-groups instead of K1-groups.
In the previous subsection we constructed an isomorphism

ε̃Ω,ξ(IndL/QpV ) ∈ Isom(dΩ(0),dΩ(RΓ(L, V )) · dΩ(IndL/QpV ))×K1(Ω) K1(Ω̃)

satisfying condition (?). Therefore, Cnaep (L/K, V ) states that there exists an
element

εΛ,ξ(IndL/QpT ) = (x, y) ∈ Isom(dΛ(0),∆ep(L/K, T ))×K1(Λ) K1(Λ̃),

such that Qp ⊗Zp εΛ,ξ(IndL/QpT ) = ε̃Ω,ξ(IndL/QpV ). By Theorem 3.4 the set
Isom(dΛ(0),∆ep(L/K, T )) is not empty, thus in view of the localization exact
sequence for K-groups

1 // K1(Λ̃) // K1(Ω̃)
∂ // K0(Λ̃, Q̂urp ) // 0

Cnaep (L/K, V ) is equivalent to saying that ∂(y) = 0 in K0(Λ̃, Q̂urp ).
The complex RΓ(L, T ) is a perfect complex of Λ-modules and IndL/QpT is

a f.g. projective Λ-module, thus M• := RΓ(L, T ) ⊕ IndL/QpT [0] is a perfect
complex of Λ-modules with H0(M•) ∼= IndL/QpT , H1(M•) ∼= H1(L, T ) and

Hi(M•) = 0 for i ≥ 2. There is an isomorphism

compV ◦ exp−1 : H1(BdR ⊗M•)→ H0(BdR ⊗M•),

and we define CL/K := χ(M•, compV ◦ exp−1) ∈ K0(Λ̃, BdR) to be the refined
Euler characteristic (see [Breu, 2.6]).

Set

Ucris := ∂([DL
cris(V ), 1− φ]) + ∂([DL

cris(V
∗(1))∗, (1− φ∗)−1]) ∈ K0(Λ,Qp).

Note that

∂([DL
cris(V

∗(1))∗, (1− φ∗)−1]) = −∂([DL
cris(V

∗(1)), 1− φ]),
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since (−)−1 induces multiplication with −1 on relative K0-groups (Appendix
B), so that

Ucris = ∂([DL
cris(V ), 1− φ])− ∂([DL

cris(V
∗(1)), 1− φ]).

Finally, the multiplication of α̃V,L/K with t−1 and the equivariant ε-factor
translates in the language of relative K0-groups into the summation of their
images under ∂.

Consider the class

CL/K − ∂(t)− ∂(εD(L/K, V )).

This belongs to K0(Λ̃, Q̂urp ), because it is invariant under the action of GQurp and

K0(Λ̃, Q̂urp ) = K0(Λ̃, BdR)
GQurp . The conjecture Cnaep (L/K, V ) takes the form:

CL/K +Ucris + [H1
f (L, T ∗(1))∗, exp∗V ∗(1), 0]− ∂(t)− ∂(εD(L/K, V )) = 0 (5.11)

in K0(Λ̃, Q̂urp ).

5.6 Tamely ramified extension

Let L/K be a tamely ramified extension, then OL is a f.g. projective Λ-module
(see [Fr, Cor. 1]). Set K• := RΓ(L, T ) ⊕ OLeχurQp ,1[0], a perfect complex of

Λ-modules with H0(K•) ∼= OLeχurQp ,1, H1(K•) ∼= H1(L, T ) and Hi(K•) = 0

for i ≥ 2. The composition rule for the refined Euler characteristic gives the
equality

CL/K = χ(K•, exp−1) + [OLeχurQp ,1, compV , IndL/QpT ] (5.12)

in K0(Λ̃, BdR).
Recall that F(pL) is a cohomologically trivial Λ-module (see [CG, Prop. 3.9]).

Moreover, by [BKS, Lem. 1.1] F(pL)[−1] is a perfect complex of Λ-modules. We
set

EL/K(F(pL)) := F(pL)[−1]⊕OL[0],

a perfect complex of Λ-modules with

H0(EL/K(F(pL))) ∼= OL, H1(EL/K(F(pL))) ∼= F(pL)

and Hi(EL/K(F(pL))) = 0 for i ≥ 2. Using the identification

LeχurQp ,1 = DL
dR(V ) = tV (L) ∼= Ĝa(L) = L,

the Λ-module isomorphism OLeχurQp ,1
∼= OL and the diagram (5.10) we get the

equality

χ((K•), exp−1) = χ(EL/K(F(pL)), logF ) in K0(Λ,Qp) (5.13)

exp−1 and logF being Ω-modules isomorphisms.

49



Now let n0 ∈ N be big enough such that pn0

L is a projective Λ-module and

logF : F(pn0

L )
∼=−→ Ĝa(pn0

L ) = pn0

L .

Then F(pn0

L ) is a projective Λ-submodule of finite index in F(pL), hence we can
define EL/K(F(pn0

L )) analogously to the previous consideration. But

[F(pn0

L ), logF , p
n0

L ] = 0 in K0(Λ,Qp),

so that

χ(EL/K(F(pn0

L )), logF ) = [F(pn0

L ), logF , p
n0

L ] + [pn0

L , id,OL]

= [pn0

L , id,OL].
(5.14)

The exact sequence

0 // F(pn0

L )
s // F(pL) // F(pL)/F(pn0

L ) // 0

gives rise to a distinguished triangle of perfect complexes of Λ-modules

EL/K(F(pn0

L ))
j // EL/K(F(pL)) // cone(j),

where j = s∗ ⊕ idOL , such that H0(cone(j)) = 0, H1(cone(j)) ∼= F(pL)/F(pn0

L )
and Hi(cone(j)) = 0 for i ≥ 2. This triangle together with (5.14) lead to the
equalities

χ(EL/K(F(pL)), logF ) = χ(EL/K(F(pn0

L )), logF ) + χ(cone(j), 0)

= [pn0

L , id,OL] + χ(F(pL)/F(pn0

L )[−1], 0).
(5.15)

The quotients F(pL)/F(pn0

L ) and pL/p
n0

L are filtered by the images of F(piL)
and piL , respectively, for i ≥ 1. The associated graded objects considered as
complexes are canonically isomorphic perfect complexes of Λ-modules, thus by
[BlB, Prop. 2.1(iii)] we have the equality

χ(F(pL)/F(pn0

L )[−1], 0) = χ(pL/p
n0

L [−1], 0)

= [pL, id, p
n0

L ]

= [OL, id, pn0

L ]− [OL, id, pL].

(5.16)

Let qK = pf := [OK : pK ] and eI := 1
|I|
∑
i∈I i be the idempotent of Ω

associated to the inertia subgroup I of G. Let ]x ∈ K1(Ω) ⊂ K1(Ω̃) be defined
for every element x ∈ Cent(Ω) as follows (cf. Appendix C). If Cent(Ω) =

∏
Fi is

the Wedderburn decomposition of Cent(Ω) into a product of fields and x = (xi)
under this decomposition, then ]x = (]xi) with ]xi = xi if xi 6= 0 and ]xi = 1 if
xi = 0.
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The normal basis theorem for OL/pL over Zp/pZp implies that there exists
a short exact sequence of G/I-modules

0 // p · Zp[G/I]f // Zp[G/I]f // OL/pL // 0.

Using this sequence we compute that

[OL, id, pL] = −∂(](qKeI)). (5.17)

Observing (5.16) and (5.17) the equality (5.15) becomes

χ(EL/K(F(pL)), logF ) = [pn0

L , id,OL] + [OL, id, pn0

L ] + ∂(](qKeI))

= ∂(](qKeI)).
(5.18)

Write Σ(L) for the set of all embeddings L → Qp fixing Qp. For each
σ ∈ Σ(K) we fix σ̂ ∈ Σ(L) such that σ̂|K = σ. Let b ∈ OL be a K[G]-basis of
L and let χ be an irreducible Qp-valued character of G. The norm resolvent is
defined by

NK/Qp(b|χ) :=
∏

σ∈Σ(K)

Detχ(
∑
g∈G

σ̂(g(b))g−1) ∈ Qp
×
,

where Detχ is the homomorphism Qp[G]× → Qp
×

given by

Detχ(
∑
g∈G

agg) := det(
∑
g∈G

agρχ(g))

and ρχ : G → GLχ(1)(Qp) is a matrix representation with character χ. Note
that the definition of NK/Qp(b|χ) depends on the choice of the σ̂. We also let
{aσ : σ ∈ Σ(K)} be a fixed Zp-basis of OK and define

δK := det((η(aσ))η,σ∈Σ(K)) ∈ Qp
×
.

This is a square root of the discriminant of K and depends on the choice of the
aσ.

Lemma 5.26 There is an equality

[OLeχurQp ,1, compV , IndL/QpT ]− ∂(t) = ∂(θ) in K0(Λ̃, L̂ur),

where θ = (θχ)χ∈Irr(G) ∈ K1(Qp[G]) with θχ = δ
χ(1)
K .

Proof. First we remark that the class

[OLeχurQp ,1, compV , IndL/QpT ]− ∂(t)

is invariant under the action of GLur , hence we can consider it in K0(Λ̃, L̂ur).
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The unramified representation V (−1) is Cp-admissible (see [FO, Prop. 3.56]),
thus we may replace the ring BdR by Cp in the definition of the comparison
isomorphism getting

compV (−1),L/Qp : Cp ⊗Qp DdR(IndL/QpV (−1))
∼=→ Cp ⊗Qp IndL/QpV (−1),

c⊗ x 7→ cx

a Cp-linear map, which commutes with the action of GQp . Taking invariants

under G(Qp/Lur) on both sides and using the theorem of Ax-Sen-Tate the
isomorphism above becomes

compV (−1),L/Qp : L̂ur ⊗Qp LeχurQp ,0
∼=→ L̂ur ⊗Qp IndL/QpV (−1)

and is induced (via tensor product Qp⊗Zp) by

O
L̂ur
⊗Zp OLeχurQp ,0

∼=→ O
L̂ur
⊗Zp IndL/QpT (−1).

From diagram (5.5) we deduce that

[OLeχurQp ,1, compV , IndL/QpT ]− ∂(t) = [OLeχurQp ,0, compV (−1), IndL/QpT (−1)]

(5.19)

in K0(Λ̃, L̂ur) ⊆ K0(Λ̃,Cp), whence to prove the lemma we have to compute
the last class.

Let Vtriv ∼= Qp denote the trivial representation of GK . There is a commu-
tative diagram of Cp[G]-modules (with an action of GQp)

Cp ⊗Qp DL
dR(Vtriv)

compVtriv
∼=

//

f1

��

Cp ⊗Qp IndL/QpVtriv

f2

��
Cp ⊗Qp DL

dR(V (−1))
compV (−1)

∼=
// Cp ⊗Qp IndL/QpV (−1),

where

IndL/QpVtriv
∼= ⊕
σ∈ΣK

Ω, DL
dR(Vtriv) ∼= L,

IndL/QpV (−1) ∼= ⊕
σ∈ΣK

Ωv, DL
dR(V (−1)) ∼= LeχurQp ,0;

and the maps are given by the formulas

compVtriv (q ⊗
∑
g∈G agg(b)) =

((
q ·
∑
g∈G σ(ag)g

)
σ

)
σ∈ΣK

,

compV (−1)(q ⊗
∑
g∈G agg(b)eχurQp ,0) =

(((
q · tur ·

∑
g∈G σ(ag)g

)
v
)
σ

)
σ∈ΣK

,

f1

(
q ⊗

∑
g∈G agg(b)

)
= q ⊗

∑
g∈G agg(b)eχurQp ,0,

f2

(
q ⊗ (

∑
g∈G zgg)σ

)
= q · tur ⊗

((∑
g∈G zgg

)
v
)
σ
, q, qg ∈ Cp, zg ∈ Qp.

52



It follows, that

[OL, compVtriv , IndL/QpTtriv] = [OLeχurQp ,0, compV (−1), IndL/QpT (−1)]

+[OL, f1,OLeχurQp ,0] + [IndL/QpT, f
−1
2 , IndL/QpTtriv]

(5.20)

in K0(Λ,Cp). But the images of the last two classes in K0(Λ̃,Cp) are zeros,

as f1 and f2 are Λ̃-modules isomorphisms. Now we are reduced to computing
[OL, compVtriv , IndL/QpTtriv]. For this we set

HL := ⊕
η∈Σ(L)

Zp,

a free Λ-module and consider the following commutative diagram of Cp[G]-
modules (with an action of GQp)

Cp ⊗Qp DL
dR(Vtriv)

compVtriv
∼=

//

ρL

∼= **VVVVVVVVVVVVVVVVVV
Cp ⊗Qp IndL/QpVtriv

ϕ1

��
Cp ⊗Zp HL,

(5.21)

where the maps ϕ1 and ρL are given by the formulas

ρL(q ⊗ l) =
(
(q · η(l))η

)
η∈Σ(L)

, q ∈ Cp, l ∈ L;

ϕ1

(
(
∑
g∈G

qgg)σ
)

=

(( ∑
g∈G

qg · η(g(b))
)
η

)
η∈Σ(σ)

for each σ ∈ Σ(K), qg ∈ Cp

and Σ(σ) := {η ∈ Σ(L) : η|K = σ}. From the diagram (5.21) we deduce the
equality

[OL, compVtriv , IndL/QpTtriv] + [IndL/QpTtriv, ϕ1, HL] = [OL, ρL, HL]

in K0(Λ,Cp). Further, [Breu, Lem. 4.16] says that the last class is equal to

∂(θ′), where θ′ = (θ′χ)χ∈Irr(G) ∈ K1(Qp[G]) with θ′χ = δ
χ(1)
K NK/Qp(b|χ), so that

we have

[OL, compVtriv , IndL/QpTtriv] = ∂(θ′)− [IndL/QpTtriv, ϕ1, HL]. (5.22)

To compute the last class above we adopt the proof of [BlB, Prop. 3.4] to our
case. We define a Λ-module isomorphism

ϕ2 : HL = ⊕
η∈Σ(L)

Zp → IndL/QpTtriv
∼= ⊕
σ∈Σ(K)

Λ,

(zη)η∈Σ(L) 7−→
(( ∑

η∈Σ(σ)

zη(η−1 ◦ σ̂)
)
σ

)
σ∈Σ(K)

, zη ∈ Zp.
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Then there are equalities in K0(Λ,Cp)

[IndL/QpTtriv, ϕ1, HL] = [HL, ϕ2, IndL/QpTtriv] + [IndL/QpTtriv, ϕ1, HL]

= [HL, ϕ1 ◦ ϕ2, HL]

= ∂([Cp ⊗Zp HL, ϕ1 ◦ (Cp ⊗Zp ϕ2)])

=: ∂(θ′′),
(5.23)

i.e. θ′′ is the reduced norm of ϕ1 ◦ (Cp ⊗Zp ϕ2). Let W be an irreducible
Cp[G]-module with character χ, then θ′′χ is the determinant of the Cp-linear
automorphism ψ of HomCp[G](W,Cp⊗ZpHL) given by f 7→ ϕ1 ◦ (Cp⊗Zp ϕ2)◦f .

We now choose a Cp-basis {wi | 1 ≤ i ≤ n} of W and let {w∗i | 1 ≤ i ≤ n}
denote the dual basis of W ∗ := HomCp(W,Cp) with respect to the canonical
evaluation pairing

〈·, ·〉 : W ×W ∗ → Cp.

We observe that if ρχ : G → GLχ(1)(Qp) is a matrix representation with

respect to the basis {wi | 1 ≤ i ≤ n}, then
〈
gwi, w

∗
j

〉
is equal to ρji – the (j, i)-

component of the matrix ρχ(g).
For each σ ∈ Σ(K) and j ∈ {1, . . . , n} we define an element{

σ,w∗j
}
∈ HomCp[G](W,Cp ⊗Zp HL)

by setting, for each w ∈W ,{
σ,w∗j

}
(w) :=

(∑
g∈G

〈
g−1w,w∗j

〉
g
)
σ̂
.

Note that the image of
{
σ,w∗j

}
lies in the Σ(σ)-component of Cp⊗ZpHL, as the

action of g ∈ G takes the σ̂-component to the σ̂g−1-component of Cp ⊗Zp HL

and
Σ(σ) = {σ̂g}g∈G , ∀σ ∈ Σ(K).

The set {{
σ,w∗j

}
| σ ∈ Σ(K), 1 ≤ j ≤ n

}
then constitutes a Cp-basis of HomCp[G](W,Cp⊗ZpHL). As next we compute the
matrix of ψ with respect to this basis. Without lost of generality we numerate
the elements of the group G as follows G = {1G = g1, g2, . . . , gm}. Then{

σ,w∗j
}

(wi) =
(

(ρji(g
−1
k ))σ̂g−1

k

)m
k=1

.

The map ϕ1 ◦ (Cp ⊗Zp ϕ2) is given by

(qη)η∈Σ(L) 7−→
(( ∑

η∈Σ(σ)

qη · η′
(
(η−1 ◦ σ̂)(b)

))
η′∈Σ(σ)

)
σ∈Σ(K)

,
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such that for a fixed η0 ∈ Σ(L), η0|K =: σ0 ∈ Σ(K)

qη0 7−→
( ∑
η∈Σ(σ0)

qη · (η0 ◦ η−1 ◦ σ̂0)(b)
)
η0

.

In particular, ϕ1 ◦ (Cp ⊗Zp ϕ2) is an automorphism of the Σ(σ)-component of
Cp ⊗Zp HL for each σ ∈ Σ(K), whence

ψ(
{
σ,w∗j

}
) =

n∑
k=1

λ
(j)
k {σ,w

∗
k} , λ

(j)
k ∈ Cp

or, equivalently,

ψ(
{
σ,w∗j

}
)(wi) =

( n∑
k=1

λ
(j)
k {σ,w

∗
k}
)

(wi), ∀i ∈ {1, . . . , n} .

An easy computation shows that(
ψ(
{
σ,w∗j

}
)(wi)

)
σ̂

=
∑
g∈G

(σ̂g)(b)ρji(g
−1)

and (( n∑
k=1

λ
(j)
k {σ,w

∗
k}
)

(wi)

)
σ̂

= λ
(j)
i .

We deduce that ψ has the block matrix A = diag({Aσ}σ∈Σ(K)), where

Aσ =
(∑
g∈G

(σ̂g)(b)ρji(g
−1)
)n
i,j=1

∈ GLn(Cp).

Taking determinant of this matrix gives

θ′′χ =
∏

σ∈Σ(K)

det
((∑

g∈G
(σ̂g)(b)ρji(g

−1)
)
i,j

)
= NK/Qp(b|χ). (5.24)

The equalities (5.19), (5.20), (5.22), (5.23) and (5.24) together prove the lemma.
�

Lemma 5.27 Let L/K be (at most) tamely ramified. Then there exists v ∈ Λ×,

such that Detχ(v) = χurQp
(
NK/Qp(f(χ)) · dχ(1)

K/Qp

)
for all χ ∈ Irr(G), thus

∂(ι(εL(L/K, V (−1)))) = ∂(ι(εL(L/K, Vtriv)))

in K0(Λ̃,Cp).
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Proof. The character χurQp : Q×p → Z×p being a homomorphism we have

χurQp
(
NK/Qp(f(χ)) · dχ(1)

K/Qp

)
= χurQp(NK/Qp(f(χ))) · χurQp(d

χ(1)
K/Qp).

Let χurQp(p) =: u ∈ Z×p and let dK/Qp = pm. Then for um ∈ Z×p ⊂ Λ×, χ ∈
Irr(G)

χurQp(d
χ(1)
K/Qp) = χurQp(p)m·χ(1) = um·χ(1) = det(ρχ(um1G)) = Detχ(um).

Recall qK = pf and eI = 1
|I|
∑
i∈I i ∈ Λ, since (|I|, p) = 1. Let v′ :=(

u
u·eI+(1G−eI)

)f
. Then for χ ∈ Irr(G)

Detχ(v′) = Detχ(u)f ·Detχ(u · eI + (1G − eI))−f

= uf ·χ(1) · det(u · ρχ(eI) + ρχ(1G)− ρχ(eI))
−f .

There exists a basis of Vρ = Vρχ , such that

ρχ(eI) =



1 ∗ . . . ∗
0 1 ∗ . . . ∗

. . .

0 . . . 0 1 ∗ . . . ∗
0 0 0 . . . 0 ∗

. . .

0 0 0 0 0 . . . 0


and

ρχ(1G)− ρχ(eI) =



0 ∗ . . . ∗
0 0 ∗ . . . ∗

. . .

0 . . . 0 0 ∗ . . . ∗
0 0 . . . 0 1 ∗

. . .

0 0 0 0 . . . 0 1


,

as eI + 1G − eI = 1G. It follows, that det(u · ρχ(eI) + ρχ(1G) − ρχ(eI)) =
urank(ρχ(eI)), hence

Detχ(v′) = uf ·(χ(1)−rank(ρχ(eI))).

But
χ(1) = dimVρ, rank(ρχ(eI)) = dim Im(ρχ(eI)) = dimV Iρ ,

so that χ(1)− rank(ρχ(eI)) = codim V Iρ . Further, since χ is a tamely ramified

character, the Artin conductor f(χ) is equal to p
codim V Iρ
K (see [Ma, p. 22]),
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whence

Detχ(v′) = χurQp(pf ·codim V Iρ ) = χurQp(NK/Qp(p
codim V Iρ
K )) = χurQp(NK/Qp(f(χ))).

Now we set v := v′ · u. It remains to prove v ∈ Λ× and for this it is enough
to show that u · eI + (1− eI) ∈ Λ×. But

(u · eI + (1G − eI)) · (eI + u · (1G − eI)) = u1G ∈ Λ×.

This finishes the proof of the first statement.
The second statement follows immediately from the first one by Remark

5.24. �

Theorem 5.28 Let L/K be a Galois extension of p-adic fields which is (at
most) tamely ramified and let V = Qp(χur)(1). Then Cnaep (L/K, V ) is equivalent
to the vanishing of

∂(](qKeI)) + ∂(θ) + Ucris + [H1
f (L, T ∗(1))∗, exp∗V ∗(1), 0]− ∂(α)− ∂(ι(εL(L/K, Vtriv)))

(5.25)

in K0(Λ̃, Q̂urp ).

Proof. The proof is given by (5.11), (5.6), (5.7), (5.8), (5.12), (5.13), (5.18),
Lemma 5.26 and Lemma 5.27. �

Let L = K and let K0 be the maximal unramified extension of Qp contained
in K, [K0 : Qp] = f . Denote by FrK the arithmetic Frobenius of K, then
τfp = FrK . We have

DK
cris(V ) = K0eχurQp ,1 with φ(eχurQp ,1) = p−1χurQp(τ−1

p )eχurQp ,1.

The map φ is Qp-linear but not K0-linear, thus

∂([DL
cris(V ), 1− φ]) = ∂(1− p−fχur(Fr−1

K ))

= ∂
(

1
pf

(pf − χur(Fr−1
K ))

)
= −∂(qK),

since pf − χur(Fr−1
K ) ∈ Z×p . Analogously,

∂([DL
cris(V

∗(1)), 1− φ]) = ∂(1− χur(FrK)).

By Corollary 5.23

[H1
f (K,T ∗(1))∗, exp∗V ∗(1), 0] = [0, id,H0(K,V ∗(1)/T ∗(1))]. (5.26)

Taking the Pontryagin dual of the exact sequence

0 // H0(K,V ∗(1)/T ∗(1))
1−FrK // Qp/Zp

(
(χur)−1

) // Qp/Zp
(
(χur)−1

) // 0
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we obtain an exact sequence of Zp-modules

0 // Zp(χur)
1−FrK// Zp(χur) // H0(K,V ∗(1)/T ∗(1))∨ // 0,

which shows that the last class in (5.26) is equal to ∂(1 − χur(FrK)). Now
(5.25) takes the form

∂(δK)− ∂(dK/Qp)− ∂(ι(τQp(IndK/Qp(ι−1 ◦ 1K)))), (5.27)

where 1K is the unique (trivial) character of G = {e}.
Let τ ′ := τQp(IndK/Qp1K), then

τQp(IndK/Qp(ι−1 ◦ 1K)) = τK(ι−1 ◦ 1K) · τ ′.

Moreover, by [Breu, Lem. 4.29] δK/ι(τ
′) ∈ (Zurp )×, hence (5.27) becomes

−∂(dK/Qp)− ∂(ι(τK(ι−1 ◦ 1K))). (5.28)

Finally, setting ψK := ψQp ◦TrK/Qp – the canonical additive character of K
– and normalizing the Haar measure dxK by∫

OK

dxK = 1

we compute ι(τK(ι−1 ◦ 1K)) = d−1
K/Qp , such that the sum of the classes in (5.28)

is equal to 0. By Theorem 5.28 this proves the conjecture Cnaep (K/K, V ).

Remark 5.29 Using Proposition 4.1 we can establish Cnaep (L/K, V ) also for
unramified extensions L/K of degree prime to p. Moreover, from Proposition
3.14(1) it follows that also Cnaep (L/K, V ∗(1)) is true for unramified extensions
L/K with (|G| , p) = 1.

Summarizing all above we get the main theorem of this section

Theorem 5.30 (Main Theorem) Let K be a finite extension of Qp and L/K
be a finite unramified extension with G = G(L/K) of order prime to p. Let
χur : GK → Z×p be a continuous unramified character with χur(GL) 6= 1. Let
V be either Qp(χur) or Qp(χur)(1) – a p-adic representation of GK . Then the
conjecture Cnaep (L/K, V ) holds.
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6 Galois invariants of K1-groups of Iwasawa al-
gebras

This section is a joint work with my supervisor professor O. Venjakob. Ex-
plicitly, Theorem 6.29, Lemma 6.42, Theorem 6.43, Corollaries 6.44 and 6.45,
Lemma 6.46 were proved by him.

6.1 The formulation of the problem

In [FK, Rem. 3.4.6] Fukaya and Kato formulate the following expectation, which
plays an important role in the definition of ε-isomorphisms: For an adic ring Λ
the sequence

1 // K1(Λ) // K1(Λ̃)
1−ϕ // K1(Λ̃) // 1

should be exact, where 1− ϕ denotes the map x 7→ xϕ(x)−1 and ϕ denotes the

Frobenius morphism acting on the ring of integers Ẑurp = W (Fp) of Q̂urp . In par-

ticular, this implies, that for any a ∈ K1(Λ), the set
{
x ∈ K1(Λ̃) | ϕ(x) = a · x

}
becomes a K1(Λ)-torsor. Hence, if this were true for any adic ring Λ, Fukaya
and Kato could (and still can) prove the uniqueness in LTNC.

For any finite group G and Λ = Zp[G] this amounts to the statement:

i∗ : K1(Zp[G]) ∼= K1(Ẑurp [G])ϕ=id,

where i∗ is induced by the inclusion i : Zp → Ẑurp , and the Frobenius map ϕ

acts coefficientwise on Ẑurp [G] and hence on the K1-group.
The original motivation of this section was to show Fukaya and Kato’s ex-

pectation in this specific case. A more general question would rather be whether
the following statement:

i∗ : K1(S∆[G]) ∼= K1(S[G])∆ (6.1)

holds whenever S is a ring and ∆ is a group acting on S by ring automorphisms.
But surprisingly, it turns out, that neither of the above statements does hold in
general (see subsubsection 6.3.2). In this section we restrict our attention to the
case, where ∆ is the Galois group of some algebraic field extension related to the
extension S over S∆ of a specific class of rings S contained in the completion
Cp of Qp. We obtain partial results toward (a corrected version of) (6.1), see
Theorem 6.52. In particular, we show, that in general the following sequence is
exact

1 // SK1(Zp[G]) // K1(Zp[G])
i∗ // K1(Ẑurp [G])ϕ=id // 1 (6.2)

and induces an isomorphism of the rational K-groups

K1(Zp[G])Q ∼= K1(Ẑurp [G])ϕ=id
Q .
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If S is a finite algebraic extension of Zp and SK1(S[G]) = 1, the behavior of
(6.1) is equivalent to the Galois descent property of the determinantal image:

i∗ : Det(S∆[G]) ∼= Det(S[G])∆.

The later has been proved by M. Taylor in the case, where S is unramified.
But the case of infinite extensions of Zp and infinite groups ∆ seems not to
be covered in the literature, not even by the fairly general recent treatment
[CPT], where only finite group actions are considered, as was pointed out to
us by M. Taylor. Actually one has to check that the techniques of integral
group logarithms extend to this situation, either by extending Taylor’s original
definition as pursued in (loc. cit.) or by using Snaith’s version in [Sn] - both in
the case of p-groups and then use standard induction techniques to reduce the
general case of finite groups to it, as e.g. in [Fr]. Both approaches work, and
for the convenience of the reader we show, that the methods of [CPT] extend
easily to our setting, recalling the main steps of their proof, but noting that for
ramified extensions Snaith’s construction might be better adapted.

The reason for the defect in (6.1) relies on the surprising vanishing

SK1(Ẑurp [G]) = 1

for all finite groups G. In particular, SK1 - in contrast to the Det-part - does
not have good Galois descent in general, see Corollary 6.51 for a more precise
statement.

This section is organized as follows: In the first subsection we recall for
the convenience of the reader Galois descent results for group rings with coeffi-
cients in local or global fields using Fröhlich’s Hom-description. In the second
subsection, the heart of the section, we first concentrate on descent results for
the Det-part. In particular, we obtain a rather general result not only for fi-
nite groups, but also for compact p-adic Lie groups and their Iwasawa algebras,
which turns out to be quite useful in number theory, see [BV]. Then we deal
with the SK1-part recalling and generalizing results from [O 1]. Altogether both
parts lead to the desired descent description (6.2) for K1. Finally, in the third
subsection we derive similar descent results over the corresponding residue class
fields.

6.2 The case of “local” and “number” fields

The goal of this subsection is to prove the following theorem which is certainly
known to experts but for lack of a reference we treat it here, because it forms
the prototype for the descent results in the integral cases later.

We fix an embedding Qp ↪→ Cp. Let L be a finite Galois extension of Qp and
M be either an arbitrary (possibly infinite) Galois extension M0 of Qp or the
p-adic completion of a Galois extension M0 of Qp, such that Qp ⊆ L ⊆M ⊆ Cp.
Furthermore, we set ∆ := Gal(M0/L).
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Remark 6.1 In the following we shall several times use in the case of comple-
tions the theorem of Ax-Sen-Tate, which says that

M∆ = (M0)∆ = L and O∆
M = (OM0)∆ = OL.

Theorem 6.2 In the situation as above let us assume that M0 is of finite ab-
solute ramification index over Qp and let Γ be a finite group. Then

i∗ : K1(L[Γ]) ∼= K1(M [Γ])∆, (6.3)

where ∆ acts on the K1-group coefficientwise.

For the proof of Theorem 6.2 we need the following

Proposition 6.3 Let N be either an arbitrary (possibly infinite) algebraic ex-
tension of Qp or the completion of an algebraic extension of finite absolute
ramification index over Qp. Let Γ be a finite group. Then
(i) The map i∗ : K1(N [Γ])→ K1(N [Γ]) is injective,
(ii) If N is a finite Galois extension of Qp and GN = Gal(N/N) is the absolute
Galois group, then

i∗ : K1(N [Γ]) ∼= K1(N [Γ])GN .

Proof. The first statement is well known for the local fields, i.e. finite extensions
of Qp, and more generally for the perfect discrete valued fields (see [Q, Prop. 2.8];
[MN, Thm. 1 and the Rem. after Thm. 2]). The infinite algebraic extensions
can always be written as a direct limits of their finite subextensions. Since the
direct limit is exact on the category of abelian groups and K1 commutes with
the direct limit (see [Ro, Exer. 2.1.9]), (i) is true for infinite algebraic extensions.
This completes the proof of (i).

Let RΓ = RΓ(N) denote the Grothendieck group of finitely generated N [Γ]-
modules. Alternatively, RΓ will be viewed as the group of virtual N -valued
characters of Γ. Since N is algebraically closed, RΓ is a free abelian group on
the irreducible characters.

Using the Wedderburn decomposition of N [Γ] we get an isomorphism of
GN -modules

K1(N [Γ]) ∼=
∏
χ

N
× ∼= Hom(RΓ, N

×
), (6.4)

where χ are irreducible N -valued characters and the action of GN on the Hom-

group is given by the actions on RΓ and on N
×

in the standard way

fg(χ) = (f(χg
−1

))g,∀f ∈ Hom(RΓ, N
×

), g ∈ GN , χ ∈ RΓ.

From [T, part 1, §2] we get the corresponding Hom-description for K1(N [Γ])

K1(N [Γ]) ∼= HomGN (RΓ, N
×

). (6.5)

The second statement is now obvious, as i∗ is a Galois homomorphism and
commutes with the Hom-description. �
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Now let L and M be as in Theorem 6.2. We introduce a commutative
diagram

K1(L[Γ])

i∗
��

// K1(L[Γ])

��

∼= // Hom(RΓ(L), L
×

)

��
K1(M [Γ]) // K1(M [Γ])

∼= // Hom(RΓ(M),M
×

),

(6.6)

The rows are injective by the Proposition 6.3. The right hand side column is

injective as L
× ⊆M× and each ψ ∈ RΓ(M) being a character of a finite group

is the composition of one of the characters χ ∈ RΓ(L) with the inclusion map
i : L→M , so that

RΓ(L) ∼= RΓ(M),

which we take as an identification henceforth. It follows, that the left hand side
column is also injective.

Taking invariants under the action of ∆, which is a left exact functor, we
obtain the inclusion of Theorem 6.2

i∗ : K1(L[Γ]) ⊆ (K1(M [Γ]))∆. (6.7)

To prove the surjectivity of i∗ we take invariants under the action of ∆ of
the following commutative diagram

K1(L[Γ])
∼= //

� _

i∗
��

HomGL(RΓ, L
×

)� _

��
K1(M [Γ])

∼= // HomGM0 (RΓ,M
×

),

so that the right hand side injection becomes an isomorphism (cf. Remark 6.1),
hence also the the left hand side map. This finishes the proof of Theorem 6.2.

Remark 6.4 Unfortunately we cannot prove Theorem 6.2 in full generality, i.e.
for M being the completion of an arbitrary Galois extension of Qp. For instance,
it is not known to us, whether the theorem holds for M being the completion of
the infinite purely ramified extension Qp(µp∞) of Qp.

Remark 6.5 If M is a p-adically complete field, then from the Hom-description
(resp. the Wedderburn decomposition) of K1(M [Γ]) we may obtain a Hom-
description (resp. the Wedderburn decomposition) of K1(M [Γ]) by taking the
invariants under the action of GM0 .

Remark 6.6 The proof above also works for “number” fields, i.e. algebraic
(possible infinite) extensions of Q. We just have to replace Qp by Q in Theorem
6.2. Then, letting L be a finite Galois extension of Q and M be an arbitrary
(possible infinite) Galois extension of Q, we follow the proof of Theorem 6.2
using the same arguments and references to get

i∗ : K1(L[Γ]) ∼= K1(M [Γ])∆.

The only difference is, that the elements of Hom-groups in the proof are to be
totally positive on all symplectic representations.
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6.3 The case of rings of integers of “local” fields

Let G be a finite group. If S is an integral domain of characteristic zero with
field of fractions L, then L will denote a chosen algebraic closure of L. We have
a map induced by base extension L⊗S −

Det : K1(S[G])→ K1(L[G]) =
∏
χ

L
× ∼= Hom(RG, L

×
),

where the direct product extends over the irreducible L-valued characters of G.
We write SK1(S[G]) for ker(Det). Since the Det-map factorizes over K1(L[G])
and the map from K1(L[G]) to K1(L[G]) induced by L ⊗L − is injective (see
Proposition 6.3 (i)), we have an exact sequence

1 // SK1(S[G]) // K1(S[G]) // Det(K1(S[G])) // 1. (6.8)

Therefore we shall consider the two parts of K1, namely the Det-part and
the SK1-part, separately.

Remark 6.7 From the exact sequence (6.8) and the fact, that K1 commutes
with direct limits (see [Ro, Exer. 2.1.9]), we deduce, that Det and SK1 also
commute with direct limits.

6.3.1 The Det-part

We keep the notation of the introduction at the beginning of this section. In
this subsubsection let S = OL, where L is either an arbitrary (possible infinite)
Galois extension L0 of finite absolute ramification index over Qp or the p-adic
completion of such L0. Then S is a Noetherian local ring, i.e. S has the unique
maximal ideal, and S[G] is semilocal, i.e. the quotient S[G]/rad(S[G]) of the
ring by its Jacobson radical is left Artinian (see [Lam, Prop. 20.6]). We have
the following

Proposition 6.8 Let Λ be a semilocal ring (for example S[G]). The maps

Λ× = GL1(Λ)
� � // GL(Λ) // // K1(Λ)

induce an equality

Det(Λ×) = Det(GL(Λ)) = Det(K1(Λ)).

Proof. See [CR 2, Thm. 40.31]. �

Conjecture 6.9 Let S = OL and G be as above. Let ∆ be an open subgroup
of Gal(L0/Qp) acting coefficientwise on S[G] and hence on Det-groups. Then

i∗ : Det(S∆[G]×) ∼= Det(S[G]×)∆.
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The proof of Conjecture 6.9 proceeds in two steps. At present we can prove
step 2 and thus Conjecture 6.9 only under further assumptions on S (see Theo-
rem 6.28). We first do the proof for finite extensions and completions of infinite
extensions, since S is p-adically complete in these cases, and then we generalize
the statement to infinite algebraic extensions using direct limits (see Remark
6.27).

Remark 6.10 The map i∗ in the conjecture is always a monomorphism, as the
following diagram commutes and respects the action of ∆

Det(S∆[G]×)

i∗

��

� � // K1(L∆[G])

i∗

��
Det(S[G]×)

� � // K1(L[G]),

and the right hand side map is injective (see subsection 6.2).

Step 1. Reduction of the general case to the p-group case. Let S and G be as
in the conjecture (for infinite Galois extensions see Remark 6.27, so we assume,
that S is p-adically complete). Let ∆ be an open subgroup of Gal(L0/Qp), so
that R := S∆ is the ring of integers of a finite extension of Qp. Then S is a
local, Noetherian, normal ring satisfying
(i) S is an integral domain, which is torsion free as an abelian group,
(ii) the natural map S → lim

←
S/pnS is an isomorphism, so that S is p-adically

complete,
(iii) S supports a lift of Frobenius, that is to say an endomorphism F : S → S
with the property that for all s ∈ S

F (s) ≡ sp mod M,

where M is the maximal ideal of S.
Note that with S also R satisfies (i)-(iii).

Remark 6.11 The reduction step is based on the following conditions to be
satisfied for every finite p-group G (S, R, ∆ being as above); actually they are
essential ingredients of step 2 and unfortunately are known to us at the present
day only in the unramified case (see Remark 6.25) below.

1. There exists a homomorphism ν defined using the lift of Frobenius on S

ν : Det(1 + I(S[G]))→ L[CG],

such that L = ν ◦ Det (for the definition of L see pp. 12-13 in [CPT]).
Here I(S[G]) denotes the augmentation ideal of the group ring S[G] and
CG denotes the set of conjugacy classes of G.
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2. Let ν′ denote the restriction of the homomorphism ν to Det(1+A(S[G])),
where A(S[G]) is the kernel of the natural map from S[G] to S[Gab], then
ν′ is an isomorphism

Det(1 +A(S[G]))
∼= // pφ(A(S[G])),

where φ : L[G] → L[CG] denotes the L-linear map obtained by mapping
each element of G to its conjugacy class.

3. We have the exact sequence

0 // φ(A(S[G]))
(ν′)−1◦(p·) // Det(S[G]×) // S[Gab]× // 1.

4. We have the isomorphism

i∗ : Det(S∆[G]×) ∼= Det(S[G]×)∆,

where ∆ acts coefficientwise on Det-groups.

From now we assume these conditions to be satisfied and describe the re-
duction step in this hypothetical generality, in the hope to prove Conjecture 6.9
some day in full generality.

Most ideas and techniques of the proof are contained in [CPT]. Thus, we
only have to relax the condition (iii) in the Hypothesis on the ring in [CPT,
p. 2]. So, let S be as above. The proof will now proceed in different stages,
restricting G first to special types of groups.

Q-p-elementary groups.

We begin with an algebraic result which we shall require later on this stage.
Suppose, that OK is the ring of integers of a finite unramified extension K

of Qp. Let A denote the ring S⊗Zp OK and let M be the ring of fractions of A.
Since M is a separable L-algebra, it can be written as a finite product of field
extensions Mi of L:

M =

n∏
i=1

Mi.

Since K is a finite unramified extension of Qp, we know that A is étale over S
and hence is normal (see [Mi, p. 27]). If Ai is the normalization of S in Mi,
then

A =

n∏
i=1

Ai.

Lemma 6.12 Let F denote the lift of Frobenius on A given by the tensor prod-
uct of the lift of Frobenius on S with the Frobenius automorphism of OK ; then
F (Ai) ⊂ Ai.
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Proof. Let {ei} denote the system of primitive orthogonal idempotents associ-
ated to the above product decomposition of A. As F is a Zp-algebra endomor-
phism, we know, that {F (ei)} is a system of orthogonal idempotents with

1 =

n∑
i=1

F (ei)

and so this system corresponds to a decomposition of the commutative algebra
A into n components. Since the decomposition of Noetherian commutative
algebras into indecomposable algebras is unique, we must have F (ei) = eπ(i) for
some permutation π of {1, ..., n}. It will suffice to show, that the permutation π
is the identity. Suppose for contradiction, that for some i, we have π(i) = j 6= i.
We know by definition, that

F (ei) ≡ epi = ei (mod MA)

and so
ei ≡ F (ei) · ei ≡ ej · ei = 0 (mod MA).

However, by [CR 1, Thm. 6.7 on p. 123] we know, that, since MA is contained
in the Jacobson radical of A, ei mod MA must be a primitive idempotent of
A/MA, and so we have the desired contradiction. �

Suppose G is a Q-p-elementary group, i.e. G may be written as a semidirect
product C o P , where C is a cyclic normal subgroup of order s, which is prime
to p, and where P is a p-group. We decompose the commutative group ring
Zp[C] according as the divisors m of s

Zp[C] =
∏
m|s

Zp[m], (6.9)

where Zp[m] is the semilocal ring

Zp[m] = Z[ζm]⊗Z Zp,

and where ζm is a primitive mth root of unity in Qp. For brevity we set S[m] =
S ⊗Zp Zp[m], and we note, that by Lemma 6.12 S[m] decomposes as a product
of rings satisfying (i)-(iii), where the Frobenius is given by the restriction of the
tensor product of the lift of Frobenius on S and the Frobenius automorphism
of Zp[m] to each component.

For each m the conjugation action of P on C induces a homomorphism

αm : P → Aut 〈ζm〉

and we let Hm = Ker(αm) and Am = Im(αm).
Tensoring the decomposition (6.9) with−⊗Zp[C]S[G] affords a decomposition

of S-algebras

S[G] =
∏
m

S[m] ◦ P, (6.10)
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where S[m] ◦ P is the free S[m]-module on the set of elements of P with the
following multiplication s1p1 · s2p2 = s1s

p1

2 p1p2, P acting on S[m] through Am.
S[m] ◦ P is also called the twisted group ring. We shall study the determinant
group Det(GL(S[G])) by studying the various subgroups Det(GL(S[m] ◦ P )).
Note that the twisted group ring S[m] ◦ P contains the standard group ring
S[m][Hm]. We therefore have the inclusion map i : S[m][Hm]→ S[m] ◦ P . We
also have a restriction map defined by choosing a transversal {ai} of P/Hm.
This induces a restriction homomorphism

res : GLn(S[m] ◦ P )→ GLn|Am|(S[m][Hm]).

By Proposition 6.8 we know, that Det(GL(S[m][Hm])) = Det(S[m][Hm]×), and
so we have defined the composition:

rm : Det(GLn(S[m] ◦ P ))→ GLn|Am|(S[m][Hm])→ Det(S[m][Hm]×). (6.11)

Since for π ∈ P , x ∈ (S[m] ◦P )×, we know, that Det(πxπ−1) = Det(x), whence

rm : Det(GLn(S[m] ◦ P ))→ Det(S[m][Hm]×)Am .

Here Am acts via αm on S[m] and by conjugation on Hm. From [T, (3.8)
on p. 69] we know, that rm is injective. Note for future reference, that for
x ∈ S[m][Hm]×, i(x) is mapped by restriction to the diagonal matrix diag(xai);
thus we write Det(x) for the usual element of Det(S[m][Hm]×) whereas Det(i(x))
denotes an element of Det((S[m] ◦ P )×). These two determinants are related
by the identity

rm(Det(i(x))) =
∏
a∈Am

Det(xa) = NAm(Det(x)).

Next we describe Det((S[m]◦P )×), and more generally Det(GL(S[m]◦P )), and
the maps i and rm in terms of character functions. In Lemma 6.18 we shall see,
that every irreducible character of G may be written in the form IndGHm(φm) for
some m, where φm is an abelian character of Hm with the property, that the
restriction of φm to C has order m. With this notation the elements Det(i(x))
in Det((S[m] ◦ P )×) are character functions on such IndGHm(φm) with

Det(i(x))(IndGHm(φm)) = rm(Det(i(x)))(φm) =
∏
a∈Am

Det(xa)(φm).

It is also instructive to see the above in the context of K-theory. We then have
induction and restriction maps

ind : K1(S[m][Hm]) � K1(S[m] ◦ P ) : rm
ind : Det(S[m][Hm]×) � Det((S[m] ◦ P )×) : rm.

Similarly we have the corresponding maps on the representation rings

K0(Qp[m][Hm]) � K0(Qp[m] ◦ P )
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and by Mackey theory the induction map i = IndPHm maps K0(Qp[m][Hm]) onto

K0(Qp[m] ◦ P ) (see [T, p. 68]).
Let IHm , resp. IP , denote the augmentation ideal of S[m][Hm], resp. the

two sided S[m] ◦ P -ideal generated by IHm . The main result on this stage is to
show:

Theorem 6.13 The map rm defined in (6) gives an isomorphism

rm : Det(GL(S[m] ◦ P )) = Det((S[m] ◦ P )×)→ Det(S[m][Hm]×)Am .

Proof. We have seen, that rm is injective on Det(GL(S[m]◦P )); we now show,
that rm maps Det((S[m] ◦ P )×) onto Det(S[m][Hm]×)Am .

First we put P̃m = P/[Hm, Hm], then the ring S[m] ◦ P̃m is isomorphic to
the ring of |Am| × |Am| matrices over (S[m][Hab

m ])Am . To see it, we note, that
by Lemma 6.12 S[m] =

∏
i Si, where Si are complete local rings. Further, by

[Wall, Lem. 8.2 on p. 613] Si ◦ P̃m is an Azumaya algebra over some complete
local ring Bi. Thus, it represents a class in the Brauer group of Bi, which is the
quotient group of the group of Azumaya algebras by the subgroup of full matrix
algebras. But by [AG, Thm. 6.5] the Brauer group of Bi is isomorphic to the
Brauer group of the residue class field bi of Bi, and thus is trivial, as bi is an
algebraic extension of Fp and the Brauer group of a quasi-algebraically closed
field is trivial (see [NSW, Thm. 6.5.4, Thm. 6.5.7 and Prop. 6.5.8]). Hence we
see, that rm induces an isomorphism

Det((S[m] ◦ P̃m)×) ∼= ((S[m][Hab
m ])Am)×. (6.12)

From the conditions (2) and (3) of Remark 6.11 above (which trivially extends to
products of rings, since formation of determinants commutes with ring products)
and using (6.12), we have a commutative diagram with exact top row:

Det(1 +A(S[m][Hm]))Am
� � // Det(S[m][Hm]×)Am // ((S[m][Hab

m ])Am)×

Det(i(1 +A(S[m][Hm])))

OO

� � // Det((S[m] ◦ P )×)

rm

OO

// // Det((S[m] ◦ P̃m)×).

∼=

OO

(6.13)

It will therefore suffice to show

rm(Det(i(1 +A(S[m][Hm])))) ⊇ Det(1 +A(S[m][Hm]))Am

and this follows from the commutative diagram

Det(1 +A(S[m][Hm]))

rm

��

ν
∼=

// φ(A(S[Hm]))⊗S S[m]

trAm
��

Det(1 +A(S[m][Hm]))Am
νAm

∼=
// (φ(A(S[Hm]))⊗S S[m])Am .

Recall that F is the tensor product of the lift of Frobenius on S with the
Frobenius automorphism of Qp(ζm)/Qp. Note also that Am acts on S[m] =
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S ⊗ Zp[m] via the second factor; so, because G is a Q-p-elementary, the action
of Am on 〈χ(G)〉 factors through Gal(Qp(ζm)/Qp); this guarantees, that the
actions of F and Am commute; hence ν is an isomorphism of Am-modules, and
this gives the bottom row in the above diagram.

Since S[m] is a free S[Am]-module, it follows, that φ(A(S[Hm]))⊗S S[m] is
a projective S[Am]-module (with diagonal action); and so trAm , and therefore
rm, is surjective. �

Finally we show:

Theorem 6.14 Let G be a finite Q-p-elementary group and let S, ∆ and R be
as above. Further, let ∆ act coefficientwise on Det(S[G]×), then

Det(S[G]×)∆ = Det(R[G]×).

Proof. By (6.10) together with Theorem 6.13

Det(S[G]×)∆ =
⊕
m

Det((S[m] ◦ P )×)∆ =
⊕
m

(Det(S[m][Hm]×)Am)∆.

Recall that ∆ acts via the first term in S[m] ◦ P = S ⊗R (R[m] ◦ P ) and that
Am acts via the second term; hence the actions of ∆ and Am commute on
S[m][Hm] = (S ⊗R R[m])[Hm]; hence we see, that

Det(S[G]×)∆ =
⊕
m

(Det(S[m][Hm]×))Am×∆ =
⊕
m

(Det(S[m][Hm]×)∆)Am

and so by the condition (4) of Remark 6.11 and Theorem 6.13 together with
(6.10) we have equalities

Det(S[G]×)∆ =
⊕
m

(Det(R[m][Hm]×))Am =
⊕
m

Det((R[m] ◦ P )×) = Det(R[G]×).

�

Application. We conclude this stage by considering the implications of the
above result for an arbitrary finite group G. From [S, 12.6] we know, that we
can find an integer l prime to p, Q-p-elementary subgroups Hi of G, integers
ni, and θi ∈ K0(Qp[Hi]), such that

l · 1G =
∑
i

ni · IndGHi(θi).

Thus, given Det(x) ∈ Det(GL(S[G]))∆, then by the Frobenius structure of the
module GL(S[G]) over K0(Qp[Hi]) (see [CPT, §5.a]) we have

Det(x)l =
∏
i

(
IndGHi(θi · ResHiG (Det(x)))

)ni
.

However, Theorem 6.14 above implies that

θi · ResHiG (Det(x)) ∈ Det(S[Hi]
×)∆ = Det(R[Hi]

×).

Thus we have shown
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Theorem 6.15 For any finite group G each element in the quotient group

Det(GL(S[G]))∆/Det(GL(R[G]))

has finite order, which is prime to p.

Q-l-elementary groups.

We consider a prime l 6= p and a Q-l-elementary group G, i.e G may be
written as (C × C ′) o L, where C is a cyclic p-group, C ′ is a cyclic group of
order prime to pl and L is an l-group. On this stage we show:

Theorem 6.16 If G is a Q-l-elementary group, then

Det(S[G]×)∆ = Det(R[G]×).

Then, reasoning as in the Application on the previous stage, we can imme-
diately deduce

Theorem 6.17 For an arbitrary finite group G each element in the quotient
group

Det(GL(S[G]))∆/Det(GL(R[G]))

has finite order, which is prime to l.

This, together with Theorem 6.15 and Proposition 6.8, will then establish
Conjecture 6.9.

Prior to proving Theorem 6.16, we first need to recall four preparatory re-
sults:

Lemma 6.18 Each irreducible character χ of G can be written in the form
IndGΩφ, where φ is an abelian character of a subgroup Ω, which contains C×C ′.

Proof. See [S, 8.2] �

Proposition 6.19 Let O denote the ring of integers of the finite extension of
Qp generated by the values of all characters of G, let m denote the maximal ideal
of O, and let P denote the S ⊗Zp O-ideal generated by m. With the notation of
the previous lemma, we write φ = φ′φp, where φ′ (resp. φp) has order prime to

p (resp. p-power order); and we put χ′ = IndGΩφ
′. Then for r ∈ GL(S[G]) we

have the congruence
Det(r)(χ− χ′) ≡ 1 (mod P).

Proof. It is an easy generalization of Lemma 1.3 on page 35 in [T]. �

Proposition 6.20 Put G′ = G/C. Then Zp[G′] is a split maximal Zp-order,
i.e. it is a product of matrix rings

Zp[G′] =
∏
i

Mni(Oi)
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over (local) rings of integers Oi. Thus we have the equalities

Det(GL(S[G′])) =
∏
i

(S ⊗Zp Oi)× = Det(S[G′]×)

and
Det(S[G′]×)∆ =

∏
i

Det((S ⊗Oi)×)∆ =
∏
i

(S ⊗Oi)×∆ =

∏
i

(R⊗Oi)× =
∏
i

Det((R⊗Oi)×) = Det(R[G′]×).

Proof. See [Re, Thm. 41.1 and Thm. 41.7]. �

Lemma 6.21 With the previous notation, the map S[G]× → S[G′]× is surjec-
tive.

Proof. Consider the canonical projection

A = S[G]
ϕ // // S[G′] = B.

Firstly, we have to prove, that Ker(ϕ) is contained in the Jacobson radical of
A. We know, that Ker(ϕ) = I(C) ⊂ A, where I(C) is generated by 1−σ, σ ∈ C.
Thus there is a positive integer r, such that (Ker(ϕ))p

r ⊂ M, where M is the
maximal ideal of S. A positive power of an ideal is contained in the Jacobson
radical of a ring if and only if the ideal is contained in the Jacobson radical (the
image of such ideal would be a nilpotent ideal of A/rad(A), hence it is contained
in rad(A/rad(A)) = (0), see [Re, §6]). Hence it is enough to prove, that M is
contained in rad(A). But this follows from the more general lemma below (see
Lemma 6.22), as the Jacobson radical of the ring A is the intersection of all
maximal left ideals of A (see [Re, Thm. 6.3]).

Secondly, by [Re, Thm. 6.10] and the first step of the proof ϕ induces an
isomorphism

ϕ̄ : A/rad(A)
∼=−→ B/rad(B),

as ϕ(rad(A)) ⊂ rad(B).
Finally, let x ∈ B×. We denote its image in (B/rad(B))× by x̄. Since ϕ

is surjective, we can lift x to an element y ∈ A. The image of y in A/rad(A)
denoted ȳ is then mapped under ϕ̄ onto x̄, thus it is contained in (A/rad(A))×

and hence y ∈ A×, as 1 + rad(A) ⊂ A× (see [Re, Thm. 6.5]). �

Lemma 6.22 Let S be a discrete valuation ring, but not a field. Let M denote
its unique maximal (left) ideal. Assume, that we have an inclusion of the rings
i : S → A, where A is an arbitrary ring, then i(M) · S is contained in every
maximal non-zero left ideal M of A.

Proof. The preimage i−1(M) of M is a non-zero prime left ideal of S, thus
it is a maximal left ideal, hence it coincides with M. Now applying i we get
i(M) · S = i(i−1(M)) · S ⊆M. �
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Proof of Theorem 6.16. Suppose, that we are given Det(z) ∈ Det(S[G]×)∆

and let z′ denote the image of z in S[G′]. Then by Proposition 6.20 we know,
that we can find x′ ∈ R[G′]× with Det(x′) = Det(z′); moreover, by Lemma
6.21 we can find x ∈ R[G]× with image x′ in R[G′]×. Thus, to conclude, it will
be sufficient to show, that Det(zx−1) is in Det(R[G]×). However, by
construction, Det(zx−1) is trivial on characters inflated from G′, and so by
Proposition 6.19 we see that

Det(zx−1)(χ) = Det(zx−1)(χ− χ′) ≡ 1 (mod P), for all χ.

Hence Det(zx−1) is in Hom(RG, 1 + P), where RG denote the group of virtual
L-valued characters of G. Moreover, since Det(zx−1) is invariant under the
action of ∆, Det(zx−1) ∈ Hom∆(RG, 1 + P). In the case, where R is the ring
of integers of a finite extension of Qp, the last Hom-group is isomorphic to the
finite product of groups of higher principal units U (1) of finite extensions of Qp,
and hence is a pro-p-group. Thus Det(zx−1) is a pro-p-element of Det(S[G]×)∆.
But by Theorem 6.15 we know, that Det(zx−1) has image in the quotient group
Det(S[G]×)∆/Det(R[G]×) of finite order, which is prime to p. Therefore we
may deduce, that Det(zx−1) is in Det(R[G]×). �

Step 2. The p-group case. In contrast to the first step the second one
can be proved only under further assumptions on S. In particular, we have to
aggravate the condition (iii) of step 1. So let G be a finite p-group. Let S be a
unitary ring satisfying the following conditions:
(i) S is an integral domain, which is torsion free as an abelian group,
(ii) the natural map S → lim

←
S/pnS is an isomorphism, so that S is p-adically

complete,
(iii) S supports a lift of Frobenius, that is to say an endomorphism F : S → S
with the property that for all s ∈ S

F (s) ≡ sp mod pS.

For this step we generalize the ideas of [CPT] to the case of an infinite group
∆.

Remark 6.23 Proposition 6.8 holds also for S satisfying the conditions (i)-(iii)
above and G being a finite p-group (see [CPT, Thm. 1.2]).

Now we are ready to formulate the main theorem of step 2.

Theorem 6.24 Let G be a finite p-group. Let S be a unitary ring satisfying the
conditions (i)-(iii) and ∆ be a group acting on S by the ring automorphisms,
such that R = S∆ also satisfies the conditions (i)-(iii). We do not suppose, that
the lift of Frobenius FR is compatible with the lift of Frobenius FS, so that FS |R
need not equal FR. Then we have the isomorphism

i∗ : Det(R[G]×) ∼= Det(S[G]×)∆,

where ∆ acts on Det-groups coefficientwise.
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Proof. Since ∆ acts on S by the ring automorphisms, we have the equality
(S×)∆ = R× and for any finitely generated free S-module M =

⊕
i

Sei, on which

∆ acts coefficientwise, M∆ is the finitely generated free R-module M∆ =
⊕
i

Rei.

S and R both satisfy the conditions (i)-(iii), which are precisely the Hy-
pothesis in [CPT], thus the proof of the theorem is identical with the proof of
Theorem 4.1 in [CPT]. Note that this proof does not depend on the condition
whether ∆ is a finite group or not, it only uses the equalities above. �

Remark 6.25 In particular, Theorem 6.24 holds for S = OL, where L is either
a finite unramified extension L0 of Qp or the completion of an infinite unramified
extension L0 of Qp - in other words for the ring of Witt vectors W (κ) of any
algebraic extension κ of Fp, and for ∆ being an open subgroup of Gal(L0/Qp).

Conjecture 6.9: proved cases and one generalization. Because of our restric-
tions in the p-group case we have proved Conjecture 6.9 only for S = W (κ) the
ring of Witt vectors of an algebraic extension κ of Fp. There are some possible
generalizations of this result as will be explained now.

Remark 6.26 Using the reduction step described in [T, p. 92] we can prove
Conjecture 6.9 for S = OL, where L is the completion of an at most tamely
ramified extension L0 of finite absolute ramification index over Qp, i.e., tamely
ramified extension of the ring of Witt vectors of an algebraic extension κ of Fp,
and ∆ being an open subgroup of Gal(L0/Qp) containing the inertia group.

Remark 6.27 The infinite Galois extensions can always be written as a direct
limit (or simply union) of their finite subextensions, and so their rings of inte-
gers, too. Thus, if we have proved Conjecture 6.9 for some class of finite Galois
extensions of Qp, we can obtain it also for the corresponding ind-objects (infi-
nite extensions), i.e. direct limits of objects in the original class, as the Det-map
commutes with direct limits (see Remark 6.7).

Explicitly, let S be the ring of integers of an infinite extension L of Qp. Let
L =

⋃
i

Li and S =
⋃
i

Si, where Li are finite extensions and Si their rings of

integers, and we have the statement of Conjecture 6.9 for all Si. Further, let ∆
be an open subgroup of Gal(L/Qp), then

Det(S[G]×)∆ = Det

(⋃
i

Si[G]×
)∆

=

(⋃
i

Det(Si[G]×)

)∆

=
⋃
i

(
Det(Si[G]×)∆

)
=

⋃
i

(
Det(S∆

i [G]×)

)
= Det

(⋃
i

S∆
i [G]×

)
= Det(S∆[G]×),

where ∆ acts on Si through the corresponding quotient group and the union
commutes with such defined ∆-action. The maps between Det-groups induced
by inclusions of rings are inclusions by Remark 6.10.

For example, Conjecture 6.9 holds for S = OL, where L is the maximal
unramified extension of Qp and ∆ is an open subgroup of Gal(L/Qp) or using
the previous remark L is the maximal tamely ramified extension of Qp and ∆ is
an open subgroup of Gal(L/Qp) containing the inertia group.
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Remarks 6.25, 6.26 and 6.27 imply

Theorem 6.28 Let G be a finite group. Let S = OL, where L is either an
arbitrary (possibly infinite) at most tamely ramified extension L0 of Qp (type
1) or the completion of an at most tamely ramified extension L0 of finite ab-
solute ramification index over Qp (type 2), and let ∆ be an open subgroup of
Gal(L0/Qp) containing the inertia group. Then

i∗ : Det(S∆[G]×) ∼= Det(S[G]×)∆.

We conclude this subsubsection with the following result generalizing Theo-
rem 6.28 to the case of compact p-adic Lie groups and their Iwasawa algebras.
Let G be a compact p-adic Lie group and let S = OL be as in the theorem
but unramified, as for the infinite and tamely ramified extensions we can use
Remarks 6.26 and 6.27. We denote by R = S∆ the ring of integers of a finite
unramified extension K over Qp, where ∆ is the Galois group Gal(L0/K), and
write

ΛS(G) := S[[G]] (resp. ΛR(G) := R[[G]])

for the Iwasawa algebra of G with coefficients in S (resp. in R). Note that it is
a Noetherian pseudocompact ring (resp. a Noetherian compact ring). For the
notion of pseudocompact rings and algebras see [Br]. Generalizing the ideas of
Proposition 5.2.16 in [NSW] we deduce, that ΛR(G) and ΛS(G) are semilocal
rings.

In the following we will use Froehlich’s Hom-description as it has been
adapted to Iwasawa theory by Ritter and Weiss in [RW]. We have the following
commutative diagram

K1(ΛR(G))

��

Det // HomGK (RG ,O×Cp)
� _

��
K1(ΛS(G))

Det // HomGL0 (RG ,O×Cp),

where GL0 = Gal(L/L0), GK = Gal(K/K) and RG as before is the free abelian
group on the isomorphism classes of irreducible Qp-valued Artin representations
of G.

Now we are ready to formulate

Theorem 6.29 With the notation as above we have

i∗ : Det(K1(ΛR(G))) ∼= Det(K1(ΛS(G)))∆,

where ∆ acts on the K1-groups coefficientwise.

Proof. From the diagram

ΛR(G)×� _

��

Det // HomGK (RG ,O×Cp)
� _

��
ΛS(G)×

Det // HomGL0 (RG ,O×Cp),
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which is commutative by the construction, and from Proposition 6.8 we get the
first obvious inclusion

Det(ΛR(G)×) = Det(K1(ΛR(G))) ⊆ Det(K1(ΛS(G)))∆ = Det(ΛS(G)×)∆.

For the opposite inclusion we use Theorem 6.28, then we only have to show,
how the general case can be reduced to the case of finite groups. To this end
write G = lim←−

n

Gn as inverse limit of finite groups. By Theorem 6.28 we have

compatible continuous maps

R[Gn]×
Det // // Det(K1(ΛS(Gn)))∆ � � // HomGL0 (RGn ,O×Cp)∆,

where the topology on HomGL0 (RGn ,O×Cp) is induced from the valuation topol-

ogy on Cp. Taking the inverse limit yields, by the compactness of ΛR(G)× =
lim←−
n

(R/πn[Gn])× and by letting RG = lim−→
n

RGn , a factorization of the homomor-

phism Det into

ΛR(G)×
Det // //

(
lim←−
n

Det(K1(ΛS(Gn)))

)∆
� � // HomGK (RG ,O×Cp).

The claim follows, because denoting by

resn : HomGL0 (RG ,O×Cp)→ HomGL0 (RGn ,O×Cp)

the restriction we obtain from the universal mapping property for

lim←−
n

HomGL0 (RGn ,O×Cp) ∼= HomGL0 (RG ,O×Cp)

inclusions

Det(K1(ΛS(G))) ⊆ lim←−
n

Im(resn ◦Det) ⊆ lim←−
n

Det(K1(ΛS(Gn))),

whence
Det(K1(ΛS(G)))∆ ⊆ Det(ΛR(G)×) = Det(K1(ΛR(G))).

�

For applications of the theorem above in number theory see [BV].

6.3.2 The SK1-part

From [O 1] we have the following
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Theorem 6.30 Let R be the ring of integers in any finite extension K of Qp.
Then for any p-group G, there is an isomorphism

ΘRG : SK1(R[G])
∼= // H2(G)/Hab

2 (G),

where Hab
2 (G) = Im

[∑
{H2(H) : H ⊆ G, H abelian}

∑
Ind−−−−→ H2(G)

]
If L ⊇ K is a finite extension, and if S ⊆ L is the ring of integers , then

(i) i∗ : SK1(R[G]) → SK1(S[G]) (induced by inclusion) is an isomorphism, if
L/K is totally ramified; and
(ii) trf : SK1(S[G])→ SK1(R[G]) (the transfer) is an isomorphism, if L/K is
unramified.

Proof. See [O 1, Thm. 8.7]. �

We see, that SK1(S[G]) as an abstract finite group is independent of S. Note
also, that i∗ and trf are Galois homomorphisms, hence SK1(S[G]) has trivial
Galois action. In order to treat infinite algebraic extensions of Qp and the
analogous descent statement of the introduction for SK1-groups we have to
describe the maps i∗ induced by inclusions, as they appear in the direct limits
(see Remark 6.27 and Remark 6.7).

Now we assume that K is unramified over Qp, then from Proposition 21 (i)
in [O 2], which is also valid for i∗ by the same argument, we have commutative
squares

SK1(R[G])

i∗

��

ΘRG // H2(G)/Hab
2 (G)

?

��
SK1(S[G])

ΘSG // H2(G)/Hab
2 (G)

and

SK1(R[G])
ΘRG // H2(G)/Hab

2 (G)

SK1(S[G])

trf

OO

ΘSG // H2(G)/Hab
2 (G)

id

OO

where ΘRG, ΘSG and trf are isomorphisms. To describe i∗ and ? we need the
following

Lemma 6.31 With the previous notation the map

trf ◦ i∗ : K1(R[G]) // K1(S[G]) // K1(R[G])

is multiplication by n = [L : K].
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Proof. By [O 1, Prop. 1.18] the composite trf ◦ i∗ is induced by tensoring
over R[G] with S[G] ∼= S⊗RR[G] regarded as an (R[G], R[G])-bimodule, where
the bimodule structure on S ⊗R R[G] is given through the second factor in
the natural way. Since S is a free R-modules of rank n, S ⊗R R[G] ∼= R[G]n

as (R[G], R[G])-bimodules, and so trf ◦ i∗ is multiplication by n on K1(R[G])
(written additively). �

The map trf ◦ i∗ on K1(R[G]) corresponds via ΘRG to the map

H2(G)/Hab
2 (G)

n· // H2(G)/Hab
2 (G),

and since trf corresponds to the identity map, i∗ corresponds to the mul-
tiplication by n. From [O 1, Thm. 3.14] we know, that SK1(R[G]) (hence
H2(G)/Hab

2 (G)) is a finite p-group, so that we have proved the

Theorem 6.32 With the notation as above i∗ is an isomorphism in the follow-
ing two cases
(i) if L/K is totally ramified,
(ii) if L/K is unramified and p - n. In this case i∗ corresponds via ΘRG to the
multiplication by n on the finite p-group (written additively).

If L/K is unramified and p|n, then i∗ still corresponds via ΘRG to the mul-
tiplication by n on the finite p-group, which is neither surjective nor injective,
as finite p-groups always have p-torsion elements.

Corollary 6.33 The groups SK1(R[G]) and SK1(S[G]) are always isomorphic
(as abstract groups with the (trivial) action of Gal(L/K)), but the statement of
the introduction for SK1-groups, i.e.

i∗ : SK1(R[G]) ∼= SK1(S[G])∆ (∆ = Gal(L/K)), (6.14)

holds only in the cases (i) and (ii) of Theorem 6.32.

Corollary 6.34 Let M be an infinite algebraic extension of Qp and let M0

be the maximal unramified extension of Qp contained in M . We write M as
the direct limit (union) of its finite subextensions and use Remark 6.7 and the
theorem above to get the following result:
If p∞ divides [M0 : Qp] (as supernatural numbers), then SK1(OM [G]) = 1 for
every finite p-group G.

Remark 6.35 From Corollary 6.34 we can obtain a generalization of Corollary
6.33 for infinite extensions: Let L be an infinite algebraic extension of Qp and
let K = L∆, where ∆ is an open subgroup of Gal(L/Qp). Then the statement
(6.14) holds only in the cases (i) and (ii) of Theorem 6.32, here p - n as super-
natural numbers. In the case, where p∞ divides [L0 : Qp] and SK1(R[G]) 6= 1,
SK1(R[G]) and SK1(S[G]) are not isomorphic even as abstract groups. See
[O 1, Exam. 8.11] for an example of a non-trivial SK1(Zp[G]).
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Now we generalize our results to the case of an arbitrary finite group G.
Note, that Theorem 3.14 in [O 1] and Lemma 6.31 still hold in this case. From
[O 3] we have the

Theorem 6.36 Let R be the ring of integers in any finite extension K of Qp
and let G be a finite group. Let L ⊇ K be a finite extension, and let S ⊆ L be
the ring of integers , then
(ii) i∗ : SK1(R[G])→ SK1(S[G]) is an isomorphism, if L/K is totally ramified;
(iii) trf : SK1(S[G])→ SK1(R[G]) is onto, if L/K is unramified.

Proof. See [O 3, Thm. 1]. �

We need some more notation. For any finite group G and any fixed prime p
Gr will denote the set of p-regular elements in G, i.e., elements of order prime
to p. Hn(G,R(Gr)) denotes the homology group induced by the conjugation
action of G on the free R-module R(Gr) on the set Gr.

When R is the ring of integers in a finite unramified extension of Qp, then Φ
denotes the automorphism of Hn(G,R(Gr)) induced by the map Φ(

∑
i rigi) =∑

i ϕ(ri)g
p
i on coefficients. We set Hn(G,R(Gr))Φ = Hn(G,R(Gr))/(1−Φ). In

analogy with the p-group case, we define

Hab
2 (G,R(Gr))Φ = Im

[∑
{H2(H,R(Hr)) : H ⊆ G, H abelian}

∑
Ind−−−−→∑

Ind−−−−→ H2(G,R(Gr))Φ

]
.

We use the notation above to formulate the

Theorem 6.37 Let R be the ring of integers in a finite unramified extension
of Qp. Then for any finite group G there is an isomorphism

ΘG : SK1(R[G])
∼= // (R/(1− ϕ)R)⊗Zp H2(G,Zp(Gr))Φ/H

ab
2 (G,Zp(Gr))Φ.

This new tensor product decomposition of SK1(R[G]) in terms of R/(1−ϕ)R
and group cohomology comes from the results announced in [CPT 1] and we are
very grateful to T. Chinburg, G. Pappas and M. J. Taylor for sharing this insight
with us, which not least also influenced our results below.
Proof. See [O 1, Thm. 12.10] and use the facts

H2(G,R(Gr))Φ
∼= (R/(1− ϕ)R)⊗Zp H2(G,Zp(Gr))Φ

and
Hab

2 (G,R(Gr))Φ
∼= (R/(1− ϕ)R)⊗Zp Hab

2 (G,Zp(Gr))Φ.

�

Arguing as in the p-group case we deduce the following
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Theorem 6.38 With the notation as above i∗ is
(i) an isomorphism, if L/K is totally ramified;
(ii) a monomorphism, if L/K is unramified and p - n.

Remark 6.39 In the case (ii) we cannot say whether i∗ is surjective or not,
since, in general, trf is only an epimorphism and not an isomorphism.

Corollary 6.40 The statement (6.14) holds in the cases (i)-(ii) of Theorem
6.38.

Proof. The statement is obvious in the case (i), since i∗ is a Galois isomorphism.
For (ii) we use the isomorphism of Theorem 6.37 for S and R noting that

R/(1− ϕ)R ∼= Zp ∼= S/(1− ϕ)

in this situation, hence SK1(S[G]) is isomorphic to SK1(R[G]) (as an abstract
finite group). Since i∗ is a Galois monomorphism in the case (ii), we get the
statement. �

Remark 6.41 Corollary 6.40 generalizes immediately to the case of infinite
algebraic extensions L.

To study more general rings (for example completions of infinite extensions
of Qp) we need generalizations of Oliver’s results on SK1 to such rings as are
announced to appear in [CPT 1] in a very general setting. Meanwhile we outline
an ad hoc description sufficient for our purposes. We just note that the same
arguments as used below also should work for any ring R as in the beginning of
Step 1 of the subsubsection 6.3.1 and satisfying the surjectivity of 1− F.

Let p be an odd prime number. For the rest of this subsubsection we assume
that R is the ring of Witt vectors of a p-closed algebraic extension κ of Fp, i.e.
κ does not allow any extension of degree p. The main example we have in mind

being Ẑurp = W (Fp). We note, that such a ring satisfies Hypothesis in [CPT]
and is a discrete valuation ring. We write m for its maximal ideal pR and start
with a crucial (certainly well-known) observation:

Lemma 6.42 We have an exact sequence

0 // Zp // R
1−ϕ // R // 0,

where ϕ denotes the Frobenius endomorphism of R.

Proof. By Artin-Schreier theory and the p-closeness of κ we have the obvious
exact sequence

0 // Fp // κ
1−ϕ // κ // 0,

because (1− ϕ)(x) = x− xp. Inductively, one shows that, for all n ≥ 1, also

0 // Zp/pnZp // R/pnR
1−ϕ // R/pnR // 0

79



is exact. Thus for any given r = (rn)n ∈ proj limnR/p
nR = R the sets Sn :=

{sn ∈ R/pnR|(1 − ϕ)(sn) = rn} are finite and form an inverse system, whence
S := proj limn Sn is non-empty and any s ∈ S satisfies (1 − ϕ)(s) = r by
construction. �

Let G be a finite p-group. The split exact sequence

1 // I(R[G]) // R[G] // R // 1

induces isomorphisms

K1(R[G]) ∼= K1(R[G], I(R[G]))⊕R×

and
R[CG] ∼= φ(I(R[G]))⊕R,

where φ : R[G] � R[CG] denotes the canonical map, CG denoting the conjugacy
classes of G. By Log(1 − x) we denote the logarithm series. Then the map
1
pL = φ( 1

p (p − Ψ)(Log(1 − x))) defined on page 13 of [CPT] induces by [CPT,

Cor. 3.3, Thm. 3.17] and the lemma above a surjective map

ΓI(R[G]) : K1(R[G], I(R[G])) � φ(I(R[G])).

We use a generalization of Theorem 2.8 in [O 1] (for ideals contained in the
Jacobson radical) in order to show, that this map is actually a group homomor-
phism, which together with the surjective homomorphism

ΓR : R× � R,

which sends x ∈ 1 + m to 1
p (p − ϕ)Log(x) and x ∈ κ× to zero (note that

Log(1 + pR) = pR and that p− ϕ is an isomorphism of R), defines a surjective
group homomorphism

ΓR[G] = ΓI(R[G]) ⊕ ΓR : K1(R[G]) � R[CG],

which factorizes over

ΓWh(R[G]) : Wh(R[G]) := K1(R[G])/(Gab × µR) � R[CG].

Setting
SK ′1(R[G]) := ker(ΓWh(R[G]))

we obtain the following exact sequence

1 // SK ′1(R[G]) // Wh(R[G])
ΓWh(R[G]) // R[CG] // 1. (6.15)

The relation between SK ′1(R[G]) and the original SK1(R[G]) will be cleared
below.

Our goal is to prove the following
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Theorem 6.43 Let G be a p-group. Then SK ′1(R[G]) = 1. In particular,

Wh(R[G]) ∼= R[CG]

is torsion free and a Hausdorff topological group (the second group being a pseu-
docompact R-module).

Proof. The proof proceeds by induction on the order of G. If G is trivial, it
is well-known that the SK ′1(R) = 1, because the kernel of ΓR is just µR. Now
assume G to be non-trivial. Then there exists a central element z ∈ G of order
p. We set Ḡ := G/ < z > and write α : G � Ḡ for the canonical projection.
Consider the following commutative diagram with exact rows

0

��

0

��
ker(Wh(α))

��

// (1− z)R[CG]

��

// 0

0 // SK ′1(R[G])

SK′1(α)

��

// Wh(R[G])

Wh(α)

��

ΓWh // R[CG]

H0(α)

��

// 0

0 // SK ′1(R[Ḡ]) // Wh(R[Ḡ])
ΓWh // R[CḠ] // 0,

in which also the right column is exact by [CPT, Lem. 3.9].
Let Iz denotes the ideal (1− z)R[G]. An immediate generalization of [O 1,

Prop. 6.4] to our setting tells us that the logarithm induces an exact sequence

1 // < z > // K1(R[G], Iz)
log // H0(G, Iz) // 0

(note that τ in (loc. cit.) has to be replaced by the trivial map, because 1− ϕ
in Lem. 6.3 is surjective on κ; also [O 1, Thm. 2.8] (for ideals contained in the
Jacobson radical) needed for the proof generalizes immediately to our setting,
because by [Lam, (20.4)] S := Mn(R[G]) is also semilocal and satisfies J(S)N ⊆
pS for N sufficiently big).

Thus, letting B denote the kernel of the third arrow in the upper line, we
obtain a commutative diagram with exact rows

0 // B

��

// K1(R[G], Iz)/ < z >

log∼=
��

// ker(Wh(α))

ΓR[G]

��

// 0

0 // H0(G, (1− z)R[Ω]) // H0(G, (1− z)R[G]) // (1− z)R[CG] // 0.

Here, following [O 1] we write

Ω = {g ∈ G| g is conjugate to zg}.
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By the Snake-lemma we see that

ker(SK ′1(α)) = ker(Wh(α)) ∩ SK ′1(R[G])

= H0(G, (1− z)R[Ω])/logB

= R[Ω]/ψ−1(logB),

where ψ : R[Ω] � H0(G, (1− z)R[Ω]) is induced by multiplication with (1− z).
We note that our last term in the above equation corresponds to D/C in

the proof of [O 1, Thm. 7.1]. Hence, copying literally the same arguments and
noting again that 1−ϕ is surjective on R, we see from (c) on p. 176 in (loc. cit.)
that C = ψ−1(logB) = R[Ω]. In other words, ker(SK ′1(α)) is trivial. Since, by
our induction hypothesis also SK ′1(R[Ḡ]) vanishes, the theorem is proved. �

Let L0 be the unique unramified algebraic extension of Qp with residue field
κ.

Corollary 6.44 For any open subgroup ∆ ⊆ Gal(L0/Qp), there is an exact
sequence

1 // SK1(R∆[G]) // K1(R∆[G]) // K1(R[G])∆ // 1,

and isomorphisms

H1(∆, µR) ∼= H1(∆,K1(R[G])) and (µR)∆
∼= K1(R[G])∆

of continuous cochain cohomology groups and coinvariants, respectively.

Proof. Taking ∆-invariants of the exact sequence (of topological Hausdorff
modules, cp. Corollary 6.45 for K1)

1 // Gab × µR // K1(R[G])
ΓR[G] // R[CG] // 0

and noting the Galois invariance of ΓR[G] (if we choose the arithmetic Frobenius
in its definition) we obtain the following commutative diagram with exact rows
(the first of which is the standard exact sequence as proved in [O 1])

1 // Gab × µR∆ × SK1(R∆[G])

��

// K1(R∆[G])

��

// R∆[CG]

∼=
��

// Gab� _

�

// 1

1 // Gab × µR∆ // K1(R[G])∆ // R[CG]∆ // H1(∆, µR)×Gab // . . .

from which the claim follows using [NSW, Prop. 1.7.7]. Note that

H1(∆, R[CG]) ∼= proj lim
n

H1(∆, R/pnR)#CG

∼= proj lim
n

(R/pnR)#CG
∆ = 0
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by the straight forward generalization of [NSW, Thm. 2.7.5] to pseudocompact
modules, again [NSW, prop. 1.7.7] and Lemma 6.42. Alternatively, we may
replace the long exact cohomology sequence above by the kernel/cokernel exact
sequence arising from the Snake-lemma associated to multiplication by 1−τ for
any topological generator τ of ∆. �

Corollary 6.45 SK1(R[G]) = 1, i.e., K1(R[G]) ∼= Det(R[G]×). In particular,

K1(R[G]) ∼= proj lim
n

K1(R/pnR[G]).

The last claim follows from the first one using [CPT, Prop. 1.3]. For the
proof of the first claim of the corollary consider the following diagram

1

��
SK1(R[G])

��
1 // Gab × µR // K1(R[G])

Det

��

ΓR[G] // R[CG]� _

Tr

��

// 1,

Hom(RG,C×p )
ΓHom // Hom(RG,Cp)

(6.16)

where ΓHom is defined as follows: Choose any continuous lift F : Cp → Cp of
the absolute Frobenius automorphism and denote by log : C×p → Cp the usual
p-adic logarithm. We write ψp and ψp for the pth Adams operator, which is
characterized by

tr(g, ψpρ) = tr(gp, ρ) for all g ∈ G,

and its adjoint, respectively. Also the rule f(ρ) 7→ F (f(ρF
−1

)) induces an
operator F̃ on Hom(RG,C×p ) and Hom(RG,Cp), which commutes obviously with
ψp. Now we set

ΓHom(f) =
1

p
(p− F̃ψp)(log ◦f).

Finally, Tr, the additive analog of Det, is induced by

Tr(λ)(ρ) = tr(ρ(λ)),

where ρ : R[G] → Mn(Cp) is the linear extension of ρ : G → GLn(Cp) keeping
the same notation. One easily checks that

Det(F (λ))(ρ) = F̃ (Det(λ))(ρ) = FDet(λ)(ρF
−1

) (6.17)

and
Tr(Ψ(λ))(ρ) = F̃ (Tr(ψpλ))(ρ) = FTr(λ)(ψpρ

F−1

) (6.18)

The Corollary will follow immediately from the following
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Lemma 6.46 The diagram (6.16) commutes and Det restricted to Gab×µR is
injective.

Proof. The injectivity being well-known we only check the commutativity
similarly as in [Sn, Prop. 4.3.25]. Since K1(R[G], I(R[G])) and K1(R) generate
K1(R[G]) as has been observed above, it suffices to check this individually on
each direct summand. The case of K1(R) being similar but easier, we assume
that a belongs to K1(R[G], I(R[G])) and calculate using the definitions, (6.18),
the continuity of ρ, the fact that log transforms det into tr and (6.17):

(Tr ◦ Γ(a))(ρ) = Tr(
1

p
(p−Ψ) log(a))(ρ)

= Tr(log(a))(ρ)− 1

p
FTr(log(a)(ψpρ

F−1

)

= tr(log ρ(a))− 1

p
F tr log(ψpρ

F−1

(a))

= log(det(ρ(a)))− 1

p
F log(det(ψpρ

F−1

(a))

=
1

p
{p log Det(a)(ρ)− F log Det(a)(ψpρ

F−1

)}

=
1

p
(p− F̃ψp) log Det(a)(ρ)

= (ΓHom ◦Det(a))(ρ).

�

Remark 6.47 The case p = 2 should be treated separately, since Log(R×) =
Log(1+2R) = 4R+2(1−ϕ)R ∼= 2R, so that we have to replace R[CG] by 2R[CG]
in the exact sequence (6.15), or, if we keep R[CG] in (6.15), then we get a finite
cokernel, which we denote by µ = 〈−1〉. Doing required corrections we can proof
Corollaries 6.44 and 6.45 also in this case. Note, that the finite cokernel µ also
appears in the first row of the commutative diagram in the proof of Corollary
6.44 (see [O 1, Thm. 6.6]).

Lemma 6.48 The statement (i) of Theorem 6.30 is true also for R being the
ring of Witt vectors of a p-closed algebraic extension κ of Fp.

Proof. The injectivity is obvious SK1(R[G]) being trivial (see Corollary 6.45)
and the surjectivity follows from the generalized Proposition 15 in [O 2]. �

Corollary 6.45 and the lemma above imply

Corollary 6.49 SK1(S[G]) = 1 for any totally ramified integral extension S of
R, where R is the ring of Witt vectors of a p-closed algebraic extension κ of Fp.

Finally, we want to generalize Corollaries 6.34 and 6.49 to the case of an
arbitrary finite group G. For this we need
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Theorem 6.50 Fix a prime p and a Dedekind domain R with field of fractions
K, such that Qp ⊆ K ⊆ Cp. For any finite group G, let g1, . . . , gk be K-
conjugacy class representatives for elements in G of order ni = ord(gi) prime
to p, and set

Ni = NK
G (gi) = {x ∈ G : xgix

−1 = gai , some a ∈ Gal(K(ζni)/K)}

and Zi = CG(gi). Then SK1(R[G]) is computable by induction from p-elementa-
ry subgroups of G and there is an isomorphism

SK1(R[G]) ∼=
k⊕
i=1

H0

(
Ni/Zi; lim−→

H∈P(Zi)

SK1(R[ζni ][H])
)
,

where P(Zi) is the set of p-subgroups of Zi and R[ζni ] denotes the integral closure
of R in K(ζni).

Proof. See [O 1, Thm. 11.8 and Thm. 12.5 ] �

Corollary 6.51 Let G be an arbitrary finite group. Let S be OM , with M as
in Corollary 6.34, but of finite absolute ramification index over Qp, or S be a
finite totally ramified extension of R, where R is the ring of Witt vectors of a
p-closed algebraic extension κ of Fp, then SK1(S[G]) = 1.

Proof. Use Corollaries 6.34, 6.49 and Theorem 6.50. Note also, that R[ζni ] is
a finite unramified extensions of R. �

End of the SK1-part.

For a finite group G and S being the ring of integers of either an arbitrary
tamely ramified extension L of Qp (type 1) or the completion of a tamely ram-
ified extension L, whose residue field is p-closed (type 2), both types having
finite absolute ramification index over Qp. Let R = S∆ be the fixed ring of S,
where ∆ is an open subgroup of Gal(L/Qp) containing the inertia group. We
write K and C for the kernel and cokernel of the map

i∗ : SK1(R[G])→ SK1(S[G])∆,

respectively. Note that they are finite p-primary abelian groups. By K1(R[G])Q
we denote rational K-groups K1(R[G])⊗Z Q. The Snake-lemma, Theorem 6.28
and the SK1-part imply immediately

Theorem 6.52 If L is of type 1, then we denote by L0 the maximal unramified
extension of L∆ contained in L and let pn be the p-part of [L0 : L∆] (0 ≤ n ≤
∞). Then for both types:

1. The following sequence is exact

1 // K // K1(R[G])
i∗ // K1(S[G])∆ // C // 1

and induces
K1(R[G])Q ∼= K1(S[G])∆

Q .
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2. If S is of type 1 and n = 0, then

K = 1 and C = 1.

3. If S is either of type 2 or of type 1 with n =∞, then we have

K ∼= SK1(R[G]) and C = 1.

4. Let G be a p-group and S be of type 1 with 0 < n <∞, then

K ∼= SK1(R[G])[pn] and C ∼= SK1(R[G])/pn.

6.4 The case of residue class fields

Let λ be an arbitrary (not necessary finite) Galois extension of Fp and G be a
finite group. Let φ denote the Frobenius automorphism on λ, which takes x ∈ λ
to xp, then Gal(λ/Fp) = 〈φ〉. Moreover, if Fpn ⊂ λ, then Fpn = λ〈φ

n〉. We fix

such an n, set κ = Fpn and ∆ = 〈φn〉. We are going to prove the following

Theorem 6.53 With the notation as above, we have an exact sequence

1 // K // K1(κ[G])
i∗ // K1(λ[G])∆ // C // 1,

which induces
K1(κ[G])Q ∼= K1(λ[G])∆

Q ,

where K and C are as in Theorem 6.52 for R and S the unique unramified
extensions of Zp lifting κ and λ, respectively. As usual φ (resp. φn) acts on the
K1-groups coefficientwise.

Proof.
From [SV] we have an exact sequence

0 // Zp[CG] // K1(Zp[G]) // K1(Fp[G]) // 1, (6.19)

where Zp[CG] is a finitely generated free Zp-module over the set of conjugacy
classes in G.

With the same argument as in [SV], we can obtain (6.19) for finite unramified
extensions of Qp and their rings of integers, and, since K1 commutes with the
direct limit, also for infinite unramified extensions. Using this fact we get the
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following commutative diagram with exact rows

1

��
K

��
0 // R[CG]

��

// K1(R[G])

��

// K1(κ[G])

��

// 1

0 // S[CG]∆ // K1(S[G])∆

��

// K1(λ[G])∆ // H1(∆, S[CG]),

K

��
1

where the bottom row is the part of the long exact sequence in the group
cohomology associated to the short exact sequence of ∆-modules, and ∆ acts
coefficientwise.

The left hand side vertical map is an isomorphism, as R[CG] and S[CG] are
finitely generated free R- and S-modules respectively. The middle column is
exact by Theorem 6.52. Thus, to prove the theorem, it is enough to show, that
H1(∆, S[CG]) = 1.

From [FS, Prop. 2] we know, that H1(Gal(M1/M2),OM1
) = 1 for every

finite unramified extension M1 of Qp. Since ∆ can be written as the inverse
limit of finite groups corresponding to the finite unramified subextensions of S,
and S[CG] as a ∆-module is isomorphic to the direct sum of copies of S, we get
the statement above by using standard properties of group cohomology. �
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7 Appendix A. Finiteness of projective resolu-
tions for the Zp[G]- and Qp[G]-modules

Theorem 7.1 (Mashke) The group ring k[G] of a finite group G over a field
k is semisimple if char(k) does not divide the order of G.

Theorem 7.2 If R is a semisimple ring, then every R-module is projective.

Proof. See [W 1, Thm. 4.2.2 on p. 95]. �

Corollary 7.3 Let Qp[G] be a group ring of a finite group G, then every Qp[G]-
module is projective.

For an arbitrary Zp[G]-module it is not true, that it admits a finite projective
resolution. However, we show, that some special class of Zp[G]-modules has such
a resolution.

Let Qp ⊆ K ⊆ L and [L : Qp] <∞. We denote byG = GK/GL = Gal(L/K)
the Galois group of L/K. Let M be a Zp-module endowed with a continuous
GK-action (i.e. a Zp[GK ]-module). We introduce IndL/KM = Zp[GK ]⊗Zp[GL]

M . The goal is to prove, that this is a free Zp[G]-module, if M is a free Zp-
module.

The action of G on IndL/KM is given in the standard way by

g(σ ⊗m) = σg−1 ⊗ g(m),∀g ∈ G,

where g ∈ GK is some lift of g.

Proposition 7.4 There is a canonical isomorphism of G-modules

ϕ : IndL/KM
∼=−→ Zp[G]⊗Zp M, σ ⊗m 7→ σ ⊗ σ(m),

where G acts on Zp[G]⊗Zp M by

g(σ ⊗m) = σ · (g)−1 ⊗m,∀ σ, g ∈ G.

Proof. ϕ is a homomorphism by the definition. The inverse homomorphism ψ
is given by σ ⊗m 7→ σ ⊗ σ−1(m), where σ ∈ GK is again some lift of σ. Two
lifts of σ differs by an element t ∈ GL, thus

ψ(ϕ(σ⊗m)) = ψ(σ⊗σ(m)) = σ̃⊗ σ̃−1σ(m) = σ̃⊗ t−1σ−1σ(m) = σtt−1⊗m = σ⊗m,

ϕ(ψ(σ ⊗m)) = ϕ(σ ⊗ σ−1(m)) = σ ⊗ σσ−1(m) = σ ⊗m.

It remains to show, that ϕ is a G-isomorphism, i.e. g(ϕ(σ ⊗ m)) = ϕ(g(σ ⊗
m)),∀g ∈ G:

ϕ(g(σ ⊗m)) = ϕ(σg−1 ⊗ g(m)) = σ · (g)−1 ⊗ σg−1g(m) = σ · (g)−1 ⊗ σ(m),

g(ϕ(σ ⊗m)) = g(σ ⊗ σ(m)) = σ · (g)−1 ⊗ σ(m).

�
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Corollary 7.5 If M is a free Zp-module, then IndL/KM is a free Zp[G]-module.

Remark 7.6 The isomorphism ϕ is also a GK-isomorphism, where the action
of GK on both sides is Zp[G]-linear.

Proof. We define the action of GK on both sides as follows:

• GK acts on IndL/KM by g(σ ⊗m) = gσ ⊗m, ∀g, σ ∈ GK , m ∈M .

• GK acts on Zp[G]⊗ZpM by g(σ⊗m) = gσ⊗g(m), ∀g ∈ GK , σ ∈ G, m ∈
M .

Then, the action is Zp[G]-linear (notation as above, τ ∈ G):

g(τ(σ ⊗m)) = g(στ−1 ⊗ τ(m)) = gστ−1 ⊗ τ(m)
!
= τ(gσ ⊗m) = τ(g(σ ⊗m)),

g(τ(σ⊗m)) = g(σ ·(τ)−1⊗m) = gσ ·(τ)−1⊗g(m)
!
= τ(gσ⊗g(m)) = τ(g(σ⊗m));

and ϕ is a GK-isomorphism:

ϕ(g(σ ⊗m)) = ϕ(gσ ⊗m) = gσ ⊗ gσ(m)
!
= g(σ ⊗ σ(m)) = g(ϕ(σ ⊗m)).

�

Remark 7.7 IndL/K is an exact functor, since Zp[GK ] is a f.g. free Zp[GL]-
module, hence flat.

Theorem 7.8 Let R be a ring and 0 → M → M ′ → M ′′ → 0 be an exact
sequence of R-modules. If two of them admit finite projective resolutions, then
the third also does.

Proof. See [Lang, Ch. XX, Thm. 3.9]. �
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8 Appendix B. Non-commutative determinants
and K-groups

This appendix consists on the facts taken from [FK, §1] and [V, §1].

8.1 Reviews of K0 and K1

Let R be a ring. By an R-module we mean a left R-module.

Definition 8.1 K0(R) is an abelian group, whose group law we denote addi-
tively, defined by the following generators and relations.

• Generators: [P ], where P is a f.g. (finitely generated) projective R-module.

• Relations:

1. If P ∼= Q, then [P ] = [Q].

2. [P ⊕Q] = [P ] + [Q].

As is seen easily, elements of K0(R) are expressed as [P ]− [Q] for f.g. pro-
jective R-modules P and Q. We have [P ]− [Q] = [P ′]− [Q′] if and only if there
is a f.g. projective R-module T such that P ⊕Q′ ⊕ T ∼= P ′ ⊕Q⊕ T .

Definition 8.2 K1(R) is an abelian group, whose group law we denote multi-
plicatively, defined by the following generators and relations.

• Generators: [P, α], where P is a f.g. projective R-module and α is an
automorphism of P .

• Relations:

1. If there is an isomorphism P ∼= Q via which α corresponds to β, then
[P, α] = [Q, β].

2. [P ⊕Q,α⊕ β] = [P, α] · [Q, β].

3. [P, α ◦ β] = [P, α] · [P, β] for α, β ∈ Aut(P ).

We have a canonical homomorphism GLn(R) → K1(R) defined by sending
α ∈ GLn(R) to [Rn, α]. Here Rn is regarded as a set of row vectors and α acts
on it from the right as an automorphism of the (left) R-module Rn.

Using the inclusion maps GLn(R) ↪→ GLn+1(R); g 7→
(
g 0
0 1

)
, let

GL∞(R) =
⋃
n

GLn(R).

Then the canonical homomorphisms GLn(R)→ K1(R) induce an isomorphism

GL∞(R)/[GL∞(R), GL∞(R)]
∼=−→ K1(R), (8.1)
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where [−,−] denote the commutator subgroup, for which we have

[GL∞(R), GL∞(R)] = E∞(R),

and E∞(R) is the group of elementary matrices.
If R is commutative, the determinant map det : GLn(R) → R× induce the

determinant map
det : K1(R)→ R×

via the isomorphism (8.1).

8.2 Non-commutative determinants

Let P(R) denote the category of f.g. projective R-modules and (P(R), is) its
subcategory of isomorphisms, i.e. with the same objects, but whose morphisms
are precisely the isomorphisms. Then there exists a category CR and a functor

dR : (P(R), is)→ CR,

which satisfies the following properties:

1. CR has an associative and commutative product structure (M,N)→M ·N
or written just MN with unit object dR(0) and inverses. All objects are
of the form dR(P )dR(Q)−1 for some P,Q ∈ P(R).

2. all morphisms of CR are isomorphisms, dR(P ) and dR(Q) are isomorphic
if and only if their classes in K0(R) coincide. There is an identification
of groups Aut(dR(0)) = K1(R) and Mor(M,N) is either empty or an
K1(R)-torsor, where α : dR(0) → dR(0) ∈ K1(R) acts on φ : M → N as
α · φ : M = dR(0) ·M → dR(0) ·N = N .

3. dR preserves the “product” structures: dR(P ⊕Q) = dR(P ) · dR(Q).

We define the category CR as follows. An object of CR is a pair (P,Q) of f.g.
projective R-modules and morphisms of CR are as follows.

There exists a morphism (P,Q)→ (P ′, Q′) if and only if [P ]−[Q] = [P ′]−[Q′]
in K0(R). If [P ]− [Q] = [P ′]− [Q′], there is a f.g. projective R-module T such
that P ⊕Q′ ⊕ T ∼= P ′ ⊕Q⊕ T . Let

GT = Aut(P ′ ⊕Q⊕ T ), IT = Isom(P ⊕Q′ ⊕ T, P ′ ⊕Q⊕ T ).

Then IT is a GT -torsor (that is, IT is a non-empty set endowed with an action
of GT and for each x, y ∈ IT , there exists an unique g ∈ GT such that y = gx).
We define the set Mor((P,Q), (P ′, Q′)) of morphisms (P,Q) → (P ′, Q′) in CR
by

Mor((P,Q), (P ′, Q′)) = K1(R)×GT IT .

Here K1(R) ×GT IT denotes the quotient of K1(R) × IT by the action of GT
given by (x, y) 7→ (xḡ, g−1y) (x ∈ K1(R), y ∈ IT , g ∈ GT and ḡ denotes the
image of g in K1(R)). It is the K1(R)-torsor obtained from the GT -torsor IT
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by the canonical homomorphism GT → K1(R). This set of morphisms does not
depend on the choice of T (see [FK]). By definition any morphism in CR is an
isomorphism and

• For an object (P,Q) of CR we denote the object (Q,P ) of CR by (P,Q)−1

and call it the inverse of (P,Q) (with respect to the product structure).

• For objects (P,Q) and (P ′, Q′) of CR we denote the object (P⊕P ′, Q⊕Q′)
of CR by (P,Q) · (P ′, Q′) and call it the product of (P,Q) and (P ′, Q′).

• For a f.g. projective R-module P we denote the object (P, 0) of CR by
dR(P ). Hence an object (P,Q) of CR is described as

(P,Q) = dR(P ) · dR(Q)−1.

Let R′ be another ring and let Y be a f.g projective R′-module endowed
with a structure of a right R-module such that the actions of R and R′ on Y
commute. Then we have a functor

Y⊗R : CR → CR′ , (P,Q) 7→ (Y ⊗R P, Y ⊗R Q).

For example, for a ring homomorphism R → R′ we have a functor R′⊗R :
CR → CR′ , by taking R′ as Y .

Also, for example, for a ring homomorphism R′ → R such that R is f.g.
and projective as a (left) R′-module, we have a functor R⊗R by taking R as Y ,
which is the functor to regard a R-module as a R′-module. The induced homo-
morphism Aut(dR(0))→ Aut(dR′(0)) coincides with the norm homomorphism
K1(R)→ K1(R′).

The functor dR can be naturally extended to complexes. Let Cp(R) be the
category of bounded complexes in P(R) and (Cp(R), quasi) its subcategory of
quasi-isomorphisms. For C ∈ Cp(R) we set C+ = ⊕i evenC

i and C− = ⊕i oddC
i

and define dR(C) := dR(C+)dR(C−)−1 and thus we obtain a functor

dR : (Cp(R), quasi)→ CR

with the following properties (C,C ′, C ′′ ∈ Cp(R))

4. If 0 → C ′ → C → C ′′ → 0 is a short exact sequence of complexes, then
there is a canonical isomorphism

dR(C) ∼= dR(C ′)dR(C ′′)

which we take as an identification.

5. If C is acyclic, then the quasi-isomorphism 0 → C induces a canonical
isomorphism

dR(0)→ dR(C).

6. dR(C[r]) = dR(C)(−1)r , where C[r] denotes the rth translate of C.
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7. The functor dR factorizes over the image of Cp(R) in Dp(R), the cat-
egory of perfect complexes (as full triangulated subcategory of the de-
rived category Cb(R) of the homotopy category of bounded complexes of
R-modules), and extends to (Dp(R), is) (uniquely up to unique isomor-
phisms).

8. If C ∈ Dp(R) has the property, that all cohomology groups Hi(C) belong
again to Dp(R), then there is a canonical isomorphism

dR(C) =
∏
i

dR(Hi(C))(−1)i .

9. Let R′ be another ring and let Y be a f.g projective R′-module endowed
with a structure of a right R-module such that the actions of R and R′ on
Y commute. Then we have a commutative diagram

(Dp(R), is)

Y⊗L
R−

��

dR // CR

Y⊗R−
��

(Dp(R′), is)
dR′ // CR′ .

10. Let Ro be the opposite ring of R. Then the functor HomR(−, R) induces
an anti-equivalence between CR and CRo with quasi-inverse induced by
HomRo(−, Ro); both functors will be denoted by −∗. This extends to a
commutative diagram

(Dp(R), is)

RHomR(−,R)

��

dR // CR

−∗

��
(Dp(Ro), is)

dRo // CRo

and similarly for RHomRo(−, Ro).

For the handling of the determinant functor in practice the following con-
siderations are quite important:

Remark 8.3 We have to distinguish two inverses of a map φ : dR(C)→ dR(D)
with C,D ∈ Cp(R). The inverse with respect to the composition will be denoted
by φ̄ : dR(D) → dR(C). But due to the product structure in CR and the iden-
tification dR(C) · dR(C)−1 = dR(0) the knowledge of φ is equivalent to that
of

dR(0) = dR(C) · dR(C)−1
φ·iddR(C)−1

// dR(D) · dR(C)−1

or even
φ−1 : dR(C)−1 → dR(D)−1
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which is by definition iddR(D)−1 · φ · iddR(C)−1 or in other words φ · φ−1 =
iddR(0). In particular, φ : dR(C)→ dR(C) corresponds uniquely to φ·iddR(C)−1 :
dR(0) → dR(0). Thus it can and will be considered as an element in K1(R).
Note that under this identification the elements in K1(R) assigned to each of φ−1

and φ̄ is the inverse to the element assigned to φ. Furthermore, the following

relation between ◦ and · is easily verified: Let A
φ→ B and B

ψ→ C be morphisms
in CR. Then the composite ψ ◦ φ is the same as the product ψ · φ · idB−1 .
Convention: If φ : dR(0)→ A is a morphism and B is an object in CR, then

we write B
·φ // B ·A for the morphism idB ·φ. In particular, any morphism

B
φ // A can be written as B

·(idB−1 ·φ) // A .

Remark 8.4 The determinant of the complex C = [P0
φ→ P1] (in degrees 0

and 1) with P0 = P1 = P is by definition dR(C) = dR(0) and is defined even
if φ is not an isomorphism (in contrast to dR(φ)). But if φ happens to be
an isomorphism, i.e. if C is acyclic, then by the property (5) there is also a

canonical map dR(0)
acyc // dR(C) , which is in fact nothing else then

dR(0) = dR(P1) · dR(P1)−1
dR(φ)−1·iddR(P1)−1

// dR(P0) · dR(P1)−1 = dR(C)

(and which depends in contrast to the first identification on φ). Hence, the

composite dR(0)
acyc // dR(C) = dR(0) corresponds to dR(φ)−1 ∈ K1(R) ac-

cording to the previous remark. In order to distinguish the above identifications
between dR(0) and dR(C) we also say, that C is trivialized by the identity when
we refer to dR(C) = dR(0) (or its inverse with respect to composition). For
φ = idP both identifications agree obviously.
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9 Appendix C. Wedderburn decomposition

Let K[G] be the group ring of a finite group G, where K is a field of charac-
teristic 0, and let Irr(G) be the set of irreducible characters of G over K or
C. By Theorem 7.1 K[G] is a semisimple ring, thus it admits a Wedderburn
decomposition.

Let χ ∈ Irr(G), then there is a unique Wedderburn component A(χ,K)
of K[G] such that χ(A(χ,K)) 6= 0. The identity of the ring A(χ,K) is the
primitive central idempotent e(χ,K) of K[G] defined as

e(χ,K) =


e(χ) = χ(1)

|G|
∑
g∈G

χ(g−1)g, if χ(g) ∈ Qp, ∀g ∈ G;∑
σ∈Gal(K(χ)/K)

e(σ ◦ χ), if χ(g) /∈ K for some g ∈ G.

A(χ,K) is a central simple algebra, which means that A(χ,K) ∼= Mnχ(Dχ),
where Dχ is a division ring with

Cent(A(χ,K)) = Cent(Dχ) = K(χ) = K(χ(g), g ∈ G).

Here the field K(χ) is obtained by adjoining to K the values of χ.
We have surjections:

Irr(G) // // {Wedderburn components of K[G]}

Irr(G) // // {primitive central idempotents of K[G]} .

If χ, χ′ ∈ Irr(G), then A(χ,K) ∼= A(χ′,K) ⇐⇒ e(χ,K) = e(χ′,K) ⇐⇒
χ′ = σ ◦ χ for some σ ∈ Gal(K(χ)/K). In this case we say, that the characters
χ and χ′ are K-equivalent, and we denote by E the set of representatives of the
K-equivalence classes of the irreducible characters of G. Then

K[G] =
∏
χ∈E

A(χ,K) =
∏
χ∈E

e(χ,K) ·K[G] ∼=
∏
χ∈E

Mnχ(Dχ). (9.1)

Remark 9.1 Cent(K[G]) =
∏
χ∈E

Cent(A(χ,K)) =
∏
χ∈E

K(χ).

Remark 9.2 If K is a local field, then the reduced norm map is bijective and

K1(K[G]) =
∏
χ∈E

K1(A(χ,K)) =
∏
χ∈E

K1(Dχ) =
∏
χ∈E

K1(K(χ)) =
∏
χ∈E

(K(χ))×.

Remark 9.3 For all Dχ, there exists a finite extension Fχ of K(χ) such that
Dχ ⊗K(χ) Fχ ∼= Mdχ(Fχ).
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fields (ed. A. Fröhlich), Academic Press, London, 1977, pp. 1–87.

[Mi] J. Milne, Etale cohomology, Princeton: Princeton University Press, 1980.

[MN] Y. Matsushima und T. Nakayama, Ueber die multiplikative Gruppe einer
p-adischen Divisionsalgebra, Proc. Imp. Acad. Tokyo 19, 1943, pp. 622–628.

97



[N] J. Neukirch, Algebraic number theory, Springer, A Series of Comprehensive
Studies in Mathematics, vol. 322, 1999.

[NSW] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields,
Springer, A Series of Comprehensive Studies in Mathematics, vol. 323, sec-
ond edition, 2008.

[O 1] R. Oliver, Whitehead groups of finite groups, London Math. Soc., Lecture
Note Series 132, 1988.

[O 2] R. Oliver, SK-1 for finite group rings II, Math. Scand. 47, 1980, pp.
195–231.

[O 3] R. Oliver, SK-1 for finite group rings III, Algebraic K-theory (Evanston),
1980.

[P-R] B. Perrin-Riou, p-adic L-functions and p-adic representations, SMF/AMS
Texts and Monographs, vol. 3, American Mathematical Society, Providence,
RI, 2000.

[Q] J. Queyrut, S-Groupes des Classes d’un Ordre Arithmétique, Journal of
Algebra 76, 1982, pp. 234–260.

[Re] I. Reiner, Maximal orders, Academic Press, 1975.

[RW] J. Ritter and A. Weiss, Toward equivariant Iwasawa theory, manuscripta
math. 109, 2002, pp. 131–146.

[Ro] J. Rosenberg, Algebraic K-theory and Its Applications, Springer, Graduate
Texts in Mathematics 147, 1994.

[S] J.-P. Serre, Linear representations of finite groups, Springer, Graduate Texts
in Mathematics 42, 1977.

[Sn] V.P. Snaith, Explicit Brauer Induction (with applications to algebra and
number theory), Cambridge studies in advanced mathematics 40, Cam-
bridge University Press, 1994.

[St] J. Stix, A course on finite flat group schemes and p-divisible groups,
preprint, 2009.

[SV] P. Schneider, O. Venjakob, A splitting for K1 of completed group rings,
preprint, 2010.

[Ta1] J. Tate, Number theoretic background, Proceedings of Sympos. Pure Math.
33, part 2, 1979, pp. 3–26.

[Ta2] J. Tate, Local constants, in Algebraic number fields, ed. Froehlich, Aca-
demic Press, London, 1977, pp. 89–131.

[T] M. Taylor, Classgroups of Group Rings, London Math. Soc., Lecture Note
Series 91, 1984.

98



[V] O. Venjakob, From the Birch and Swinnerton Dyer Conjecture over the
Equivariant Tamagawa Number Conjecture to non-commutative Iwasawa
theory, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ.
Press, Cambridge, 2007, pp. 333–380.

[Wall] C.T.C. Wall, Norms of units in group rings, Proc. London Math. Soc.
(3) 29, 1974, pp. 593–632.

[W] C. Weibel, An introduction to algebraic K-theory, a graduate textbook in
progress, http://www.math.rutgers.edu/∼weibel/Kbook.html

[W 1] C. Weibel, An introduction to homological algebra, Cambridge studies in
advanced mathematics 38, 1995.

[Y] S. Yasuda, Local constants in torsion rings, Ph.D. thesis, University of
Tokyo, 2001.

99


